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1. MOTIVATION
• How can we use a small set of fine finger gestures or

hand movements to control everything around us?

• Existing keyboard or touch based interaction paradigm
is slow.

• Natural, low effort and high precision interaction
paradigm is urgently needed. For example, hand ges-
tures.

• Camera or vision sensors for hand gestures acquisition
cause sensitivity to lighting conditions, occlusion, and
typically require dedicated processing power.

• Radar sensors emerged as new HCI technology that of-
fer micro gesture interaction with low energy consump-
tion.

2. MAJOR CHALLENGES
• Low Signal-to-Noise Ratio (SNR) environments due to

the presence of non-stationary and unexpected back-
ground.

• High variability of gestures in terms of scale, non-
uniform frame rate, and measured distance.

• Lack of leveled data, high intra-class and low inter-
class variation in features

• Sequential n/w i.e., RNN/ LSTM have limited abil-
ity to learn temporal dynamics of multi-channel range-
Doppler sequences

3. RES3DTENET ARCHITECTURE: HAND GESTURE CLASSIFICATION
• Res3DTENet consists of two main modules in sequential order: * Residual 3D-CNN (Res3D-CNN); * Transformer

Encoder Network (TENet).

• SOLI Hand Gesture Dataset: 11 gesture classes, 10 subjects, 25 instances per subject per gesture = 2750 sequences
• Approximately 40 frames per gesture instance/sequence
• 11 gesture classes, 1 subject, 50 instances per subject per gesture, 5 sessions = 2750 sequences

4. RES3DTENET ARCHITECTURE: TRANSFORMER ENCODER
• Transformer Encoder N/W consists of 2 encoder layers and FC layer.

• Each encoder block consists of 3 attention heads, feed forward n/w, layer norm.

• Trained over spatio-temporal RD features to refine temporal inter-relationship b/w frames

5. IMPORTANT FINDINGS
• Transformer n/w outperforms the LSTM network

in terms of faster training and capturing long-term
dependencies.

• Residual learning helps in training deep network
more easily and leads to better generalization.

• Micro motion gestures like finger slide and finger
rub are least classifying gesture classes.

• Smaller training data may reduce n/w convergence
and its generalization capability.

6.EXPERIMENTAL ANALYSIS
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