

Fingerspelling recognition with two-steps cascade process of spotting and classification

Masanori Muroi¹, Naoya Sogi¹, Nobuko Kato² and Kazuhiro Fukui¹

 ¹ Graduate School of Systems and Information Engineering, University of Tsukuba, Japan
² Faculty of Industrial Technology, Tsukuba University of Technology, Japan

Motivation

- Fingerspelling is a tool to express a certain letter by a hand shape.
- Used in conjunction with sign language

Main goal: Extract and categorize fingerspelling sequences in a continuous video.

Basic Idea

Divide a whole process into two-steps: Spotting and Classification
Step 1. Spotting: Segment and extract a fingerspelling sequence

Basic Idea

Step 2. Classification: <u>Classify the spotted fingerspelling sequence</u>

Solution to realize the Basic Idea

Propose a fingerspelling recognition framework based on the two types of methods:

Spotting: Temporal Regularized CCA (TRCCA)[2]

The smoothness on the temporal domain

Classification: Orthogonal Mutual Subspace Method (OMSM)[3] with CNN features[4]

The subspace representation of multiple images

[2]S. Tanaka, A. Okazaki, N. Kato, H. Hino and K. Fukui, Spotting ngerspelled words from sign language video by temporally regularized canonical component analysis, 2016 IEEE International Conference on Identity, Security and Behavior Analysis, 2016, pp. 1-7.

[3] K. Fukui and O. Yamaguchi, The kernel orthogonal mutual Subspace method and its application to 3D object recognition, *in Asian Conference on Computer Vision*, 2007, pp. 467-476.

[4] N. Sogi, T. Nakayama, and K. Fukui, A method based on convex cone model for image-set classication with cnn features, *in 2018 International Joint Conference on Neural Networks*, 2018, pp. 1-8.

6

Solution to realize the Basic Idea

Propose a fingerspelling recognition framework based on the two types of methods:

Spotting: Temporal Regularized CCA (TRCCA)[2]

The smoothness on the temporal domain

Classification: Orthogonal Mutual Subspace Method (OMSM)[3] with CNN features[4]

The subspace representation of multiple images

[2]S. Tanaka, A. Okazaki, N. Kato, H. Hino and K. Fukui, Spotting ngerspelled words from sign language video by temporally regularized canonical component analysis, 2016 IEEE International Conference on Identity, Security and Behavior Analysis, 2016, pp. 1-7.

[3] K. Fukui and O. Yamaguchi, The kernel orthogonal mutual Subspace method and its application to 3D object recognition, *in Asian Conference on Computer Vision*, 2007, pp. 467-476.

[4] N. Sogi, T. Nakayama, and K. Fukui, A method based on convex cone model for image-set classication with cnn features, *in 2018 International Joint Conference on Neural Networks*, 2018, pp. 1-8.

Proposed Framework for Fingerspelling Recognition

Proposed Framework for Fingerspelling Recognition

Classification accuracy and recognition time

Accuracies and recognition times of different frameworks.

Framework	Accuracy	Recognition Time
TRCCA [1]	64.1%	39.7 ms
CNN feat- OMSM	68.9%	52.7 ms
KOTRCCA [1]	79.0%	169.0 ms
TRCCA-CNN(softmax)	80.7%	56.9 ms
TRCCA-KOMSM[2]	86.9%	187.3 ms
TRCCA-CNN feat-OMSM(Proposed)	88.2%	91.2 ms