# Fingerspelling recognition with two-steps cascade process of spotting and classification



### Masanori Muroi<sup>1</sup>, Naoya Sogi<sup>1</sup>, Nobuko Kato<sup>2</sup>, Kazuhiro Fukui<sup>1</sup>

<sup>1</sup> Graduate School of Systems and Information Engineering, University of Tsukuba, Japan <sup>2</sup> Faculty of Industrial Technology, Tsukuba University of Technology, Japan

#### (1) Introduction

- Fingerspelling is a tool to express a letter by a hand shape. > <u>Used in conjunction with sign language</u>
- Main goal: Detect and categorize fingerspelling in a continuous video as a mixture of fingerspelling sequences and irrelevant images.
- Basic idea: Divide a whole process into two-steps cascade process:
  - 1. Spotting: Segment and extract a fingerspelling sequence in an input video by utilizing temporal dynamic information.
  - 2. Classification: Classify the spotted sequence by utilizing 3D hand shape information.
- We propose a fingerspelling classification framework based on two types of methods:
- 1) Temporal Regularized CCA (TRCCA)[1] for spotting
- 2) Orthogonal Mutual Subspace Method (OMSM)[2] with CNN feature[3] for classification

# (2) Proposed framework Step1: Spotting process Spotted fingerspelling Reference fingerspelling $\{X_c^i\}$ 1.2 Extraction $\{y_{t=T-i+1}|\beta_i>\eta\}$ 1.1 Comparison Input video No Smoothness Smoothness (TRCCA) Threshold Frame Number i

- Fingerspelling images in an input video are segmented and extracted using TRCCA.
- TRCCA: Extension of the canonical correlation analysis with the smoothness on the temporal domain
- > The smoothness efficiently incorporates the temporal information
- The detailed procedure
- 1.1 The input image sequence  $\{y_t\}_{t=T-i+1}^T$  is compared with the reference fingerspelling  $\{X_c^i\}$  by TRCCA. If the input sequence has high similarity with the reference fingerspelling, the input sequence is identified to fingerspelling.
- 1.2 Fingerspelling images  $\{y_{t=T-i+1}|\beta_i>\eta\}$  are extracted from the input sequence.

# Step2: Classification process



Irrelevant Images Fingerspelling Sequence

Extract and Categorize

- Spotted fingerspelling is classified by OMSM with CNN features using hand shape image sets.
- OMSM: Represent 3D shape of a hand by <u>subspace</u>.
- > The subspace representation is effective for 3D object recognition
- The detailed procedure
- 2.1 CNN features  $\{f_{in}^i\}$  and  $\{f_c^{i,j}\}$  are extracted from  $\{y_{t=T-i+1}|\beta_i>\eta\}$  and  $\{X_c^i\}$ .
- 2.2 Each class subspace  $\{S_c\}$  and an input subspace  $S_{in}$  are generated by applying PCA to the sets of CNN features.
- 2.3 Orthogonal subspaces  $\{\hat{S}_c\}$  and  $\hat{S}_{in}$  are generated by applying orthogonalize transformation to  $\{S_c\}$  and  $S_{in}$ .
- 2.4 The spotted fingerspelling is classified based on similarities between the input subspace  $S_{in}$ and reference subspaces  $\{\hat{S}_c\}$ .

#### (3) Experiments

- Dataset:
- > We recorded 15 fingerspelling classes by a depth camera.
- ☐ The hand region is extracted from the whole input image based on the depth map.
- We synthesized an input video, which continuously inputs fingerspelling and not fingerspelling sequences alternately.
- Evaluation index:
  - Spotting performance, Classification accuracy, and Recognition time.



**Predicted Class** 

Confusion Matrix: Results of the spotting process.

Accuracies and recognition times of different methods.

| Framework                         | Accuracy | Recognition Time |
|-----------------------------------|----------|------------------|
| TRCCA[1]                          | 64.1%    | 39.7 ms          |
| CNN feat - OMSM                   | 68.9%    | 52.7 ms          |
| KOTRCCA[1]                        | 79.0%    | 169.0 ms         |
| TRCCA - CNN(softmax)              | 80.7%    | 56.9 ms          |
| TRCCA - KOMSM                     | 86.9%    | 187.3 ms         |
| TRCCA - CNN feat - OMSM(Proposed) | 88.2%    | 91.2 ms          |
|                                   |          |                  |



Sample images of Japanese fingerspelling dataset.



**Predicted Class Confusion Matrix:** Results of the classification process

## (4) Conclusion

- We proposed fingerspelling recognition framework based on a complementary combination of TRCCA and OMSM with CNN features.
- We confirmed that our two-steps process significantly outperforms conventional one-step methods in terms of classification accuracy and recognition time.

#### (5) References

[1]S. Tanaka, A. Okazaki, N. Kato, H. Hino and K. Fukui, Spotting fingerspelled words from sign language video by temporally regularized canonical component analysis, 2016 IEEE International Conference on Identity, Security and Behavior Analysis, 2016, pp. 1-7. [2]K. Fukui and O. Yamaguchi, The kernel orthogonal mutual Subspace method and its application to 3D object recognition, in Asian Conference on

Computer Vision, 2007, pp. 467-476. [3] N. Sogi, T. Nakayama, and K. Fukui, A method based on convex cone model for image-set classification with cnn features, in 2018 International Joint Conference on Neural Networks, 2018, pp. 1-8.