Fingerspelling recognition with two-steps cascade process of
spotting and classification
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(1) Introduction (3) Experiments

* Fingerspelling is a tool to express a letter by a hand shape. » Used in conjunction with sign language * Dataset:
* Main goal : Detect and categorize fingerspelling in a continuous video Irrelevant Images  Fingerspelling Sequence » We recorded 15 fingerspelling classes by a depth camera.
as a mixture of fingerspelling sequences and irrelevant images. O The hand region is extracted from the whole input image
» Basic idea : Divide a whole process into two-steps cascade process: - § TR L based on the depth map. \ 1 U~ S
1. Spotting : Segment and extract a fingerspelling sequence in an input video » We synthesized an input video, which continuously inputs »w 9O w
- .by utlllzmg temporal dynamic mformatlc.)r).. | | Extract and Categorize flng.ersp.ellmg. and not fingerspelling sequences alternately. Sample images of Japanese fingerspelling
2. Classification : Classify the spotted sequence by utilizing 3D hand shape information. * Evaluation index: dataset.
* We propose a fingerspelling classification framework based on two types of methods: » Spotting performance, Classification accuracy,
1) Temporal Regularized CCA (TRCCA)[1] for spotting and Recognition time. e e s e e ——
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1 5 10 KOTRCCA[1] 73.0% 165.0 ms Results of the classification process
Frame Number i TRCCA - CNN(softmax) 80.7% 56.9 ms
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* Fingerspelling images in an input video are segmented TRCCA - KOMSM 86.9% fo/2lms
and extracted using TRCCA. * Spotted fingerspelling is classified by OMSM with CNN features using hand shape TRCCA - CNN feat - OMSM(Proposed)  88.2% 91.2 ms
* TRCCA: Extension of the canonical correlation analysis image sets. (4) Conclusi
: : . onciasion
with the smoothness on the temporal domain * OMSM: Represent 3D shape of a hand by subspace. - e
> The smoothness efficiently incorporates the temporal information | > D€ subspace representation is effective for 3D object recognition * We prop(?sed fingerspelling recognition framework based on a complementary combination of TRCCA and
. OMSM with CNN features.
. * The detailed procedure . L L . .
* The detailed procedure ; y ; * We confirmed that our two-steps process significantly outperforms conventional one-step methods in
, _ T , , 2.1 CNN features {f},} and { C”} are extracted from {y,—r_;;+1|8; > n} and {XL}. o . ,
1.1 The input image sequence {y; };-r_;41iS compared with . . terms of classification accuracy and recognition time.
. . i 2.2 Each class subspace {S.} and an input subspace S;,, are generated by applying PCA
the reference fingerspelling {XC} by TRCCA.
. L . to the sets of CNN features. £
If the input sequence has high similarity with the reference A A _ , (5) References
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