ODANet: Online Deep Appearance Network for Identity-Consistent Multi-Person Tracking

Guillaume Delorme¹, Yutong Ban², Guillaume Sarrazin¹, Xavier Alameda-Pineda¹ ¹Inria, LJK, Univ. Grenoble Alpes, France ² MIT CSAIL Distributed Robotics Lab

1

10/01/2021, MPRSS 2020, Milano, Italy

Introduction

Tracking by detection

t + 2

Tracking

Tracking by detection

Detections

Tracking

t + 2

t + 1

• Our tracker can be seen as a generalization of a **Kalman Filter** dealing with **multiple** objects at once.

- Our tracker can be seen as a generalization of a **Kalman Filter** dealing with **multiple** objects at once.
- Dealing with multiple objects/targets introduces a detection-to-target assignment problem.

- Our tracker can be seen as a generalization of a **Kalman Filter** dealing with **multiple** objects at once.
- Dealing with multiple objects/targets introduces a detection-to-target assignment problem. It alternates between a GMM responsibility computation and a weighted Kalman forward pass.

- Our tracker can be seen as a generalization of a **Kalman Filter** dealing with **multiple** objects at once.
- Dealing with multiple objects/targets introduces a detection-to-target assignment problem. It alternates between a GMM responsibility computation and a weighted Kalman forward pass.
- To fully **disambiguate** the assignment problem, we need a **discriminative** appearance model, which **adapts** to the situation at hand.

Appearance modeling

The observation model

• A key component of our model is the definition of the Observation Model:

Which track to associate \mathbf{o}_t with?

$$p(\mathbf{o}_t | \mathbf{x}_t, Z_t = n) = p(\mathbf{y}_t | \mathbf{x}_t, Z_t = n)$$

Geometric Model, the closest one

$$\times \underbrace{p(\mathbf{u}_t|Z_t=n)}_{(1)}$$

n)

Appearance Model, the most similar one

• Previous strategy: use of **hand-crafted** descriptors and metrics to compute appearance similarity.

- Previous strategy: use of **hand-crafted** descriptors and metrics to compute appearance similarity.
- Lack **discriminative** power and **robustness**, due to appearance variations (Illumination, pose, background, occlusions...)

Inspired by model-based tracking methods¹, our strategy is to **learn** a descriptor.

• Deep Appearance Models are generally trained **offline**, on large manually annotated datasets².

¹Junlin Hu, Jiwen Lu, and Yap-Peng Tan. "Deep metric learning for visual tracking". In: *IEEE Transactions on Circuits and Systems for Video Technology* 26.11 (2016), pp. 2056–2068. ²Siyu Tang et al. "Multiple People Tracking by Lifted Multicut and Person Re-identification". In: *2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*. Washington, DC, USA: IEEE Computer Society, July 2017, pp. 3701–3710.

Inspired by model-based tracking methods¹, our strategy is to **learn** a descriptor.

- Deep Appearance Models are generally trained **offline**, on large manually annotated datasets².
- While they seek generality, they lack discriminative power.

¹Junlin Hu, Jiwen Lu, and Yap-Peng Tan. "Deep metric learning for visual tracking". In: *IEEE Transactions on Circuits and Systems for Video Technology* 26.11 (2016), pp. 2056–2068. ²Siyu Tang et al. "Multiple People Tracking by Lifted Multicut and Person Re-identification". In: *2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*. Washington, DC, USA: IEEE Computer Society, July 2017, pp. 3701–3710. Inspired by model-based tracking methods¹, our strategy is to **learn** a descriptor.

- Deep Appearance Models are generally trained **offline**, on large manually annotated datasets².
- While they seek generality, they lack discriminative power.
- We want to train a NN ψ_{ω} using past detections annotated by the tracker, and update it every few frames.

¹Junlin Hu, Jiwen Lu, and Yap-Peng Tan. "Deep metric learning for visual tracking". In: *IEEE Transactions on Circuits and Systems for Video Technology* 26.11 (2016), pp. 2056–2068. ²Siyu Tang et al. "Multiple People Tracking by Lifted Multicut and Person Re-identification". In: *2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*. Washington, DC, USA: IEEE Computer Society, July 2017, pp. 3701–3710.

We update only the top layers of ψ_{ω} in a siamese setting using the contrastive loss $\mathcal{J}(\omega) = \frac{1}{2} \sum_{i,j=1} \max(0, 1 - I_{ij}(\tau - \|\psi_{\omega}(\mathbf{u}_i) - \psi_{\omega}(\mathbf{u}_j)\|^2)),$ We update only the top layers of ψ_{ω} in a siamese setting using the contrastive loss $\mathcal{J}(\omega) = \frac{1}{2} \sum_{i,j=1} \max(0, 1 - I_{ij}(\tau - \|\psi_{\omega}(\mathbf{u}_i) - \psi_{\omega}(\mathbf{u}_j)\|^2)),$

It needs to be supervised with **binary** (+/-) labels. We have access to past **posterior** estimation $q(\mathbf{z}_t)$, thus we use **soft labelisation** instead:

We update only the top layers of ψ_{ω} in a siamese setting using the contrastive loss $\mathcal{J}(\omega) = \frac{1}{2} \sum_{i,j=1} \max(0, 1 - I_{ij}(\tau - \|\psi_{\omega}(\mathbf{u}_i) - \psi_{\omega}(\mathbf{u}_j)\|^2)),$

It needs to be supervised with **binary** (+/-) labels. We have access to past **posterior** estimation $q(\mathbf{z}_t)$, thus we use **soft labelisation** instead:

$$\gamma_{ij} = p(Z_{t_ik_i} = Z_{t_jk_j} | \mathbf{o}_{1:t-1}) \approx \sum_{n=1}^N q(Z_{t_ik_i} = n)q(Z_{t_jk_j} = n).$$

We label positive pairs with $I_{ij} = \gamma_{ij}$ and negative pairs with $I_{ij} = -(1 - \gamma_{ij})$.

• To make it work smoothly, we use 2 models in parallel, one for training and the other for inference. Our implementation reaches 10 FPS in our framework.

³Ergys Ristani et al. "Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking". In: *ECCV Workshops.* 2016.

- To make it work smoothly, we use 2 models in parallel, one for training and the other for inference. Our implementation reaches 10 FPS in our framework.
- The convolutional layers of ψ are pretrained using external Re-ID dataset, using a standard training framework³.

³Ergys Ristani et al. "Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking". In: *ECCV Workshops.* 2016.

Results

We evaluate our tracker in a **multi-party conversation**: the robot has a **low fov** and often change position, increasing **identity switches**.

⁴A. Milan et al. "MOT16: A Benchmark for Multi-Object Tracking". In: *arXiv:1603.00831 [cs]* (Mar. 2016). arXiv: 1603.00831. URL: http://arxiv.org/abs/1603.00831.

⁵Keni Bernardin and Rainer Stiefelhagen. "Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics". In: *EURASIP Journal on Image and Video Processing* (2008).

We evaluate our tracker in a **multi-party conversation**: the robot has a **low fov** and often change position, increasing **identity switches**.

We also want to use a **standard** dataset, thus we use of the MOT16 dataset⁴ that we divide in 2 evaluation settings:

• *moving surveillance camera* for the sequences with camera **fixed**: we **simulate** the **camera movement** to increase identity switches.

⁴A. Milan et al. "MOT16: A Benchmark for Multi-Object Tracking". In: *arXiv:1603.00831 [cs]* (Mar. 2016). arXiv: 1603.00831. URL: http://arxiv.org/abs/1603.00831.

⁵Keni Bernardin and Rainer Stiefelhagen. "Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics". In: *EURASIP Journal on Image and Video Processing* (2008).

We evaluate our tracker in a **multi-party conversation**: the robot has a **low fov** and often change position, increasing **identity switches**.

We also want to use a **standard** dataset, thus we use of the MOT16 dataset⁴ that we divide in 2 evaluation settings:

- *moving surveillance camera* for the sequences with camera **fixed**: we **simulate** the **camera movement** to increase identity switches.
- robot navigating in the crowd for the sequences where the camera is **moving**.

We use the CLEAR metrics⁵ to evaluate the quality of the tracker results.

⁴A. Milan et al. "MOT16: A Benchmark for Multi-Object Tracking". In: *arXiv:1603.00831 [cs]* (Mar. 2016). arXiv: 1603.00831. URL: http://arxiv.org/abs/1603.00831.

⁵Keni Bernardin and Rainer Stiefelhagen. "Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics". In: *EURASIP Journal on Image and Video Processing* (2008).

Quantitative results: moving surveillance setting

Model	RcII (↑)	$Prcn(\uparrow)$	$ $ IDs(\downarrow)	FM (\downarrow)	MOTA(↑)
CH ⁶	49.41	88.20	266	759	42.49
ODA-FR	49.53	88.66	195	702	42.97
ODA-UP (Ours)	54.72	86.68	591	976	45.63

 Table 1: Results on the moving surveillance camera setting.

- ODA-UP stands for our *online deep appearance update*.
- ODA-FR refers to the same appearance model architecture, but frozen (FR), trained on an external person Re-ID dataset.
- CH stands for Color Histogram based appearance model.

⁶Yutong Ban et al. "Tracking a varying number of people with a visually-controlled robotic head". In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE. 2017, pp. 4144–4151.

Quantitative results: robot navigating in the crowd

Model	Rcll (↑)	$Prcn(\uparrow)$	$IDs(\downarrow)$	FM (\downarrow)	MOTA(↑)
CH ⁷	45.81	91.80	698	1704	41.15
ODA-FR	45.78	93.12	516	1524	41.97
ODA-UP (Ours)	52.29	90.48	782	1499	46.15

Table 2: Results on the robot navigating in the crowd setting.

- ODA-UP stands for our *online deep appearance update*.
- ODA-FR refers to the same appearance model architecture, but frozen (FR), trained on an external person Re-ID dataset.
- CH stands for Color Histogram based appearance model.

⁷Yutong Ban et al. "Tracking a varying number of people with a visually-controlled robotic head". In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE. 2017, pp. 4144–4151.

Thank you for your attention.