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Introduction



A robotic context

Figure 1: Software architecture of our robotic platform.

In today’s presentation we’ll focus on the visual tracker part of our implementation.
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Tracking by detection
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Tracking by detection
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Multiple Object Tracking

• Our tracker can be seen as a generalization of a Kalman Filter, dealing with

multiple objects at once.

• Dealing with multiple objects/targets introduces a detection-to-target

assignment problem, which makes probabilistic formulations intractable and

motivates the use of a variational approximation.

• To fully disambiguate the assignment problem, we need a discriminative

appearance model, which adapts to the situation at hand.
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Bayesian Model



Model

Notations:

• Xt ∈ (R6)N : State Variables (tracks).

• Ot = (Yt ,Ut) ∈ (R4 × I)Kt observations at t (detections), I the image space.

• Ot = (Yt ,Ut) ∈ (R4 × I)Kt observations at t (detections), I the image space.
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Posterior Intractability

At each time t, our goal is to solve

x̂t = arg max
xt

p(xt |o1:t)

p(xt |o1:t) =
t∑

τ=1

N∑
n=1

K∑
k=1

∫
x1,...xt−1

p(x1, . . . xt ,Zτk = n|o1:t ; )dx1 . . . dxt−1

=
C∑

c=1

πcp(xt ; Θc)︸ ︷︷ ︸
mixture

,with C = (N + 1)tKmixture components

Its direct estimation is intractable.
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Variational Approximation

To solve this, we make use of the following variational approximation

p(xt , zt |o1:t) ≈ q(xt)q(zt),

Using this approximation we derive a variational EM which minimizes the

Kullback-Leibler divergence between the approximation and the true posterior.

It boils down to alternate between updating q(zt) with a GMM responsibility

computation, and updating q(xt) with a weighted Kallman forward pass.
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Appearance modeling



The observation model

• A key component of our model is the definition of the Observation Model:

Which track to associate ot,k with?︷ ︸︸ ︷
p(ot,k |xt,n,Zt,k = n) = p(yt,k |xt,n,Zt,k = n)︸ ︷︷ ︸

Geometric Model, the closest one

× p(ut,k |Zt,k = n)︸ ︷︷ ︸
Appearance Model, the most similar one

(1)
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Histogram-based appearance model

• Previous strategy: use of hand-crafted descriptors and metrics to compute a

distance interpreted as a density function.

• Lack discriminative power and robustness, due to appearance variations

(Illumination, pose, background, occlusions...)
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Deep Appearance Model

Inspired by model-based tracking methods1, our strategy is to learn a descriptor,

using a neural network, with appearances extracted from the tracker’s history.

• Deep Appearance Models are generally trained offline, on large manually

annotated datasets2.

• While they seek generality, they lack discriminative power.

• We want to train a shallow NN, in an online fashion, updated every few frames.

1Junlin Hu, Jiwen Lu, and Yap-Peng Tan. “Deep metric learning for visual tracking”. In: IEEE Transactions on

Circuits and Systems for Video Technology 26.11 (2016), pp. 2056–2068.
2Siyu Tang et al. “Multiple People Tracking by Lifted Multicut and Person Re-identification”. In: 2017 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR). Washington, DC, USA: IEEE Computer

Society, July 2017, pp. 3701–3710.
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Online Appearance Model Update
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Online Appearance Model Update
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Siamese Neural Network
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Appearance model update

We update the top layers of ψω in a siamese setting every few frames using the

contrastive loss
J (ω) =

1

2

∑
i ,j=1

max(0, 1− lij(τ − ‖ψω(ui)− ψω(uj)‖2)),

This loss needs to be supervised with binary (positive or negative pairs) labels. With

the tracker’s supervision we have access to past posterior estimation q(zt),thus we

propose to a soft labelisation instead:

γij = p(Ztiki = Ztjkj |o1:t−1) ≈
N∑

n=1

q(Ztiki = n)q(Ztjkj = n).

We label positive pairs with lij = γij and negative pairs with lij = −(1− γij).
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Implementation details

• To make it work smoothly, we use 2 models in parallel, one for training and the

other for inference. Our implementation reaches 10 FPS in our framework.

• The convolutional layers of ψ are pretrained using external Re-ID dataset, using

a standard training framework3.

3Ergys Ristani et al. “Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking”. In:

ECCV Workshops. 2016.
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Results



Quantitative results: evaluation settings

We evaluate our tracker in a multi-party conversation: the robot has a low fov

and often change position, increasing identity switches.

We also want to use a standard dataset, thus we use of the MOT16 dataset4 that

we divide in 2 evaluation settings:

• moving surveillance camera for the sequences with camera fixed: we simulate

the camera movement to increase identity switches.

• robot navigating in the crowd for the sequences where the camera is moving.

We use the CLEAR metrics5 to evaluate the quality of the tracker results.

4A. Milan et al. “MOT16: A Benchmark for Multi-Object Tracking”. In: arXiv:1603.00831 [cs] (Mar. 2016).

arXiv: 1603.00831. url: http://arxiv.org/abs/1603.00831.
5Keni Bernardin and Rainer Stiefelhagen. “Evaluating Multiple Object Tracking Performance: The CLEAR

MOT Metrics”. In: EURASIP Journal on Image and Video Processing (2008).
18
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Quantitative results: moving surveillance setting

Model
Detection Tracking Identities

Rcll Prcn MOTA MOTP IDP IDR IDF1

CH6 49.4 88.2 42.5 84.5 70.3 39.4 50.5

ODA-FR 49.5 88.7 43.0 84.8 66.7 37.2 47.8

ODA-UP 54.7 86.7 45.6 84.0 75.4 45.7 56.0

Table 1: Results on the moving surveillance camera setting.

• ODA-UP stands for our online deep appearance update.

• ODA-FR refers to the same appearance model architecture, but frozen (FR).

• CH stands for Color Histogram based appearance model.

6Yutong Ban et al. “Variational bayesian inference for audio-visual tracking of multiple speakers”. In: IEEE

Transactions on Pattern Analysis and Machine Intelligence (2019).
19



Quantitative results: robot navigating in the crowd

Model
Detection Tracking Identities

Rcll Prcn MOTA MOTP IDP IDR IDF1

CH7 45.8 91.8 41.2 80.7 74.1 37.0 49.3

ODA-FR 45.8 93.1 42.0 81.0 73.8 36.3 48.6

ODA-UP 52.3 90.5 46.2 81.5 79.0 45.7 57.9

Table 2: Results on the robot navigating in the crowd setting.

• ODA-UP stands for our online deep appearance update.

• ODA-FR refers to the same appearance model architecture, but frozen (FR).

• CH stands for Color Histogram based appearance model.

7Yutong Ban et al. “Variational bayesian inference for audio-visual tracking of multiple speakers”. In: IEEE

Transactions on Pattern Analysis and Machine Intelligence (2019).
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Conclusion

Thank you for your attention.
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