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NVIDIA Deep Learning 
Fundamentals

Raymond Ptucha, 
Rochester Institute of Technology, NVIDIA Deep 

Learning Institute
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Fair Use Agreement

This agreement covers the use of all slides in this document, please read 
carefully. 

• You may freely use these slides, if:
– You send me an email telling me the conference/venue/company name 

in advance, and which slides you wish to use.
– You receive a positive confirmation email back from me.
– My name (Ptucha) appears on each slide you use.

(c) Raymond Ptucha, rwpeec@rit.edu
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Agenda

• Part I- Intuition and Theory 
– 9:00-9:45am: Introduction
– 9:45-10:30am: Convolutional Neural Networks

• 10:30-10:45pm: Break

• Part II- Hands on
– 10:45am-Noon: Hands-on exercises
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Navigating to Qwiklabs

• Have you registered for NVIDIA account 
yet?
1. Navigate to: https://nvlabs.qwiklab.com

2. Login or create a new account

• Select event:
– ICFHC CV Ambassador Workshop

• Then select class:
– Image Classification with DIGITS

• You can return to class for up to 60 days
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Machine Learning

• Machine learning is giving 
computers the ability to analyze, generalize, 
think/reason/behave like humans.

• Machine learning is transforming medical 
research, financial markets, international security, 
and generally making humans more efficient and 
improving quality of life.

• Inspired by the mammalian brain, 
deep learning is machine learning 
on steroids- bigger, faster, better!
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The point of Singularity

• The point of 
singularity is when 
computers become 
smarter than 
humans.

time

in
te

llig
en

ce

Evolution of biology
Advancement of technology
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Unleashing of Intelligence

• Machines will slowly match, then 
quickly surpass human capabilities.

• Today it is exciting/scary/fun to drive next to an 
autonomous car.

• Tomorrow it may be considered irresponsible for 
a human to relinquish control from a car that has 
faster reaction times, doesn’t drink/text/get 
distracted/tired, and is communicating with 
surrounding vehicles and objects.
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Why is AI (Deep Learning) Just Now Becoming 
Practical in Many Day-to-Day Situations?

• Availability of data; 
• Sustained advances in 

hardware capabilities 
(including GPUs running 
machine learning workloads); 

• Omnipresent connectivity; 
• Lower cost and power 

consumption; 
• Sustained advances in 

algorithmic learning 
techniques.

Amount of data

Pe
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Traditional ML

DL with super 
computers

DL with GPUs

Hot trend:
High performance 
architecture experts 
teaming up with deep 
learning experts
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NEC Face Recognition

2017: The Year of AI: 
The Wall Street Journal, Forbes, and Fortune

SONY Playstation Virtual Reality

Evolutionary Reinforcement Learning
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2017: The Year of AI: 
The Wall Street Journal, Forbes, and Fortune

DeepBach

YOLO v2 Object Detection

NVIDIA Autonomous Car 
Detection & Segmentation
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Some Things to Look for in 2018

http://research.nvidia.com/sites/default/files/pubs/2017-10_Progressive-Growing-of/karras2017gan-paper.pdf 
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Some Things to Look for in 2018

Faceshift GDC Apple iPhone X, Animoji Yourself
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Some Things to Look for in 2018

NVIDIA Drive
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The Human Brain

• We’ve learned more about the brain in the last 5 years 

than we have learned in the last 5000 years!

• It controls every aspect of our lives, but we still don’t 

understand exactly how it works.
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The Brain on Pattern Recognition

• Airplane, Cat, Car, Dog

http://thebraingeek.blogspot.com/

2012/08/blindsight.html

STL-10 dataset
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The Brain on Pattern Recognition

Despite Changes in Deformation:
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The Brain on Pattern Recognition

Despite Changes in Occlusion:
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The Brain on Pattern Recognition

Despite Changes in Size, Pose, Angle:

Tardar Sauce “Grumpy Cat”
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The Brain on Pattern Recognition

Despite Changes in Background Clutter:
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The Brain on Pattern Recognition

Despite Changes in Class Variation…
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Teaching Computers to See

• It took evolution 540M years 
to develop the marvel of the 
eye-brain.

• Lets say a child collects a new image
every 200msec.

• By age 3, this child has processed 
over 100M images.

5 "#$%&'/'&) 60'&)/#", 60#",/ℎ. 12ℎ./1$2 3651$2'/2. 32.' = 2365

• Today’s computers can do this in a few days…
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Neural Nets on Pattern Recognition

• Instead of trying to code simple intuitions/rules 
on what makes an airplane, car, cat, and dog…

• We feed neural networks a large number of 
training samples, and it will automatically learn 
the rules!

• We will learn the magic behind this today!
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Artificial Neuron
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…

Note, x0 is the bias unit, x0=1

Activation function
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Artificial Neural 
Networks

• Artificial Neural 
Network (ANN) –
A network of 
interconnected 
nodes that “mimic” 
the properties of a 
biological network 
of neurons

Input

Hidden

Output
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4-Layer ANN Fully Connected 
Topology

Input Layer

…

A 20x20 image would 
have 400 input nodes

Hidden Layer 1

…

a
nodes

Hidden Layer 2

…
b

nodes

Output Layer

C nodes, where 
C is the number 

of classes

… D1
D2

D3

DC

…

Backpropagation (~1985) uses !"!# for learning
Learning happens in the weights- each line is a weight.

…
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Neuron Model
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Activation Function Comparison

• Tanh
• Sigmoid

• Rectified Linear Units 
(ReLU)
– Better for high dynamic 

range
– Faster learning
– Overall better result
– Neurons can “die” if allowed to grow 

unconstrained

Gradient of both 
saturates at zero.
Sigmoid also non-
zero centered, so 
in practice tanh
performs better.

ℎ" # = %&# 0, #

ℎ" # = 1
1 + +,"-.ℎ" # = +"-. − +,"-.

+"-. + +,"-.
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Krizhevsky et al., 2012.

6× faster!

Tanh vs. ReLU on CIFAR-10 

dataset [Krizhevsky’12]

ReLU reaches 
25% error 6×

faster!
Note: Learning 
rates optimized 
for each, no 
regularization, 
four layer CNN.

tanh

ReLU
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Where Do Weights Come From?

• The weights in a neural network need to be 
learned such that the errors are minimized.

• Just like logistic regression, we can write a 
cost function.

• Similar to gradient descent, we can write an 
iterative procedure to update weights, with 
each iteration decreasing our cost.

• These iterative methods may be less efficient 
than a direct analytical solution, but are 
easier to generalize.
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Multiclass Loss 
Functions

• The input image scores highest against 
cat, but is also somewhat similar to dog.

• How do we assign a loss function?

input

Nnet
model

(w/ 3 
outputs)

Bunny score
Cat score

Dog score
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Activation Function of Output Layer

• Sigmoid returns 0 or 1 for each output node.
• What if you wanted a confidence interval?
• Use a linear activation function for regression: a(l)=z(l)

• Softmax often used for classification:

• Note: Only the output layer activation function 
changes- all hidden layer nodes activation functions 
would be the sigmoid/tanh/ReLU function.

!"# = ℎ& ' " = ( )"# =
*'+ )"#

∑"-.:0 *'+ )"#
exp() of each  output node

Sum of all output nodes
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exp() take in values +/- values and returns all positive values.

exp(z), where z is each output node
input

Nnet
model

(w/ 3 
outputs)

Bunny score
Cat score

Dog score

!"# $%&

∑%():+ !"# $%&
×100

-0.97

4.38

0.62

0.38

79.8

1.86

0.46

97.3

2.26

!"# $%&
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Most Common Loss Functions

• The cost function we previously used was a direct copy from 

logistic regression and works great for binary classification.

• For multi-class, there are two popular data loss methods:

1. Cross-entropy loss, which uses softmax

!"## $ = −'"(
)*+ ",-.$$

∑012:4 )*+ ",-0$
Loss for 

sample i = 

exp(output of GT node)

Sum of exp(output) of all nodes

!"## $ = 5
67.$

89* 0, ",-6 − ",-.$ + Δ Sum of incorrect –

correct classes

2. Multiclass SVM Loss (Weston Watkins formulation):
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Most Common Loss Functions

• The cost function we previously used was a direct copy from 

logistic regression and works great for binary classification.

• For multi-class, there are two popular data loss methods:

1. Cross-entropy loss, which uses softmax:

!"## $ = −'"(
)*+ ",-.$$

∑012:4 )*+ ",-0$
Loss for 

sample i = 

exp(output of GT node)

Sum of exp(output) of all nodes

!"## $ = 5
67.$

89* 0, ",-6 − ",-.$ + Δ Sum of incorrect –

correct classes

2. Multiclass SVM Loss (Weston Watkins formulation):
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Bias (underfit) vs. Variance (overfit) 
errors

Complexity of model

er
ro

r

(cross validation 
error)

(training error)

Model too simple.
Too high error on 
train and test

Model too complex.
Overfitting to training 
set

Adopted from:
Andrew Ng, ML class

Sweet spot! X
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Regularization Tuning

More regularization à

er
ro

r (cross validation 
error)

(training error)
Sweet spot! X

Adopted from:
Andrew Ng, ML class
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Fully Connected Layers?

• 200×200 pixel image.
• 40K input fully 

connected to 40K 
hidden (or output) layer.

• 1.6 billion weights!
• Generally don’t have 

enough training 
samples to learn that 
many weights.

Ranzato CVPR’14
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Convolution Filter

• Convolution filters apply a transform to an 
image.  

• The above filter detects vertical edges.

Ranzato CVPR’14
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Locally Connected Layer

• 200×200 pixel image.

• 40K input.

• Four 10×10 filters, 

each fully connected

• 40K×10×10×4=16M 

weights….getting 

better!

Ranzato CVPR’14
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Locally Connected Layer
• 200×200 pixel image.
• 40K input.
• Four 10×10 filters, 

each fully connected
• 40K×10×10×4=16M 

weights….getting 
better!

• Can we formulate so 
each filter has similar 
statistics across all 
locations?

Ranzato CVPR’14
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Convolution Layer
• 200×200 pixel image.
• 40K input.
• Four 10×10 filters, 

each fully connected
• 40K×10×10×4=16M 

weights….getting 
better!

• Require each filter 
has same statistics 
across all locations.

• Learn filters.

Ranzato CVPR’14
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Convolution Layer
• 200×200 pixel image.
• 40K input.
• Four 10×10 filters, 

each fully connected
• 40K×10×10×4=16M 

weights….getting 
better!

• Require each filter 
has same statistics 
across all locations.

• Learn filters.
• To learn four filters we 

have 4×10×10=400 
parameters- great!Ranzato CVPR’14
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Many Flavors of Convolution 
Neural Networks (CNNs)…

LeNet-5, LeCun 1989 AlexNet, Krizhevsky 2012

VGGNet, Simonyan 2014 GoogLeNet (Inception), Szegedy 2014

ResNet, He 2015 DenseNet, Huang 2017
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https://github.com/vdumoulin/conv_arithmetic

Image Convolution

input

output

3×3 filter 
sliding over 
input image

By padding (filterWidth-1)/2, output image 
size matches input image size

Horiz pad

Vert pad
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Max Pooling- Reducing the Size of 
an Image

cs321n, Karpathy, Li
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Convolution Neural Network (CNN) 
Building Block

Image

Pooling

Convolution

Deng ICML ‘14
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Putting it All Together

Whole System

Convolution Pooling
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Learning Filters

Input image
28×28

32 Learned Filters, each 5×5

32 Filtered images, each is 28×28

Use zero padding
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Filters

3×3 filter 3×3 filter 3×3×4    filter
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Learning Filters

Input image
28×28×3

32 Learned Filters, each 5×5×3

32 Filtered images, each is 28×28×1

Use zero padding
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CNN Architecture

(Not so) Toy Example Output: 

prediction of 1 of 

10 categories

3

64

6
4

32

64

Input data Filtered data

32

2x2

16
16 32

32 64 64

32

16

32

16

8

64

8 4

32 32
16 16

8 8 4

32 filters, each filter is 

5×5×3.  2 pixel pad added 

to top/bot/left/right so 

filtered image is same 

dimension as input image.

6
4

16 filters, each filter 

is 5×5×32.  2 pixel 

pad.

32 filters, 

each filter is 

5×5×16.  2 

pixel pad.

64 filters, 

each filter is 

5×5×32.  2 

pixel pad.

1×1×64. 

filter,  0 pixel 

pad.

4×4 

converted 

to 16 

element 

vector

Fully 

connected to 

10 classes

1

16
10

1

1

4

4

Max 

pooling × 2

Input RGB image: 

64×64×3 pixels
Max 

pooling × 2

Max 

pooling × 2

Max 

pooling × 2
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Case Study

cs321n, Karpathy, Li
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Case Study

Note:
Most memory in 
early layers

Note:
Most parameters 
in FC layers
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CNN Visualization

Zeiler, Fergus, 2014
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CNN Visualization

Zeiler, Fergus, 2014
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CNN as Vector Representation

2D Plot of fc8 Feature Vector Image of fc8 Feature VectorInput Image

Typical CNN Architecture
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CNN as Vector Representation

• As it turns out, these fully connected layers are excellent 
descriptors of the input image!

• For example, you can pass images through a 
pre-trained CNN, then take the output from a FC 
layer (image2vec) as input to a SVM classifier. 

• Images in this vector space generally have the property 
that similar images are close in this latent representation.
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Vision Tasks
Classification + 

LocalizationClassification
Instance 

SegmentationObject Detection

Single Object Multiple Objects
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Classification   vs. 
Classification + Localization

CAT

(CAT,x,y,w,h)

Classification 
Input: Image
Output: Class label
Evaluation metric: Accuracy

Classification + 
Localization 

Input: Image
Output: Class label, Box 
coordinates
Evaluation metric: 
Intersection over Union (IoU)
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Classification with Localization

⋯ ⋮

Lets allow a few classes:
1. Car
2. Truck
3. Pedestrian
4. Motorcycle

• For now, lets assume one 
object per image.  

• Each object has {x, y, w, h}
• For this image, object location 

{x, y, w, h} = {0.3, 0.6, 0.4, 0.3}

(0,0)

(1,1)

.

.

Image from: deeplearning.ai, C4W3L01
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Classification with Localization
Four classes:
1. Car
2. Truck
3. Pedestrian
4. Motorcycle
Localization {x, y, w, h}

Image from: deeplearning.ai, C4W3L01

Define y label: ! =

#$
%&
%'
%(
%)
*+
*,
*-
*.

Probability of an object

Bounding box location

0/1 for each class
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Classification with Localization

Four classes:
1. Car
2. Truck
3. Pedestrian
4. Motorcycle
Localization {x, y, w, h}

Image from: deeplearning.ai, C4W3L01

! =

1
0.3
0.6
0.4
0.3
0
1
0
0

! =

0
?
?
?
?
?
?
?
?

Cost function (squared error):

*+,, =-
./0

1
2!. − !. 4

*+,, = 2!0 − !0 4

If y1=1

If y1=0

? = don’t 
care

56
78
79
7:
7;
<0
<4
<=
<>
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Classification with Localization
Four classes:
1. Car
2. Truck
3. Pedestrian
4. Motorcycle
Localization {x, y, w, h}

Image from: deeplearning.ai, C4W3L01

! =

1
0.3
0.6
0.4
0.3
0
1
0
0

! =

0
?
?
?
?
?
?
?
?

Alternate cost function:
• y1 can be logistic loss
• y2 à y5 can be 

squared error
• y6 à y9 can be 

softmax cross entropy

? = don’t 
care

*+
,-
,.
,/
,0
12
13
14
15
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Snapchat 
Facewarp?

• Traditional approach:
Viola Jones 
Face Detection

Average eye and 82 
facial feature points

Search for actual point locations 
using Mahalanobis distance

Restrict based on 
PCA statistics

Repeat ~3-5×
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Snapchat 
Facewarp?

• Deep Learning 
approach:

Candidate 
faces

Refine 
face 

selection

Facial 
feature 
pointsMT-CNN [Zhang et al. 2016] 
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Localization

• Facial feature 
points

ptucha

Each face has 68 points, 
so CNN would output:

Face?
pt1X
pt1Y
pt2X
pt2Y
.
.
.
pt68X
pt68Y

137 outputs

Of course, 
need GT for 
thousands of 
faces to train 
model.
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Can do same with Body Pose…

Pishchulin et al. CVPR’16
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Image Credit: Redmon, Joseph, et al [4] 

Object Detection
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More than one object per image?
Training set:

x y

1

1

0

0

1

Car detection example

Images from: deeplearning.ai, C4W3L03
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Sliding Window Detection

ptucha 122

…

Images from: deeplearning.ai, C4W3L03
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Computing FC layers with Convolution

10 × 10 × 16 5 × 5 × 1614 × 14 × 3

2 × 2

MAX POOL FC FC

y
softmax (4)

14×14×3 10×10×16 5×5×16

2 × 2

MAX POOL

1×1×400 1×1×400 1×1×4

400

⋮

400

⋮

NoPad
Stride=1

(16)
5×5×3

NoPad
Stride=1

(16)
5×5×3

NoPad
Stride=1

(400)
5×5×16

NoPad
Stride=1

(400)
1×1×400

NoPad
Stride=1

(4)
1×1×400

Images from: deeplearning.ai, C4W3L04
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Replacing Sliding Windows w/Fully Convolutional CNNs
NoPad

Stride=1

(16)
5×5×3

2 × 2

MAX POOL NoPad
Stride=1

(400)
5×5×16

NoPad
Stride=1

(400)
1×1×400

NoPad
Stride=1

(4)
1×1×400

14×14×3 10×10×16 5×5×16 1×1×400 1×1×400 1×1×4

16×16×3 12×12×16 6×6×16 2×2×400 2×2×400 2×2×4

28×28×3 24×24×16 12×12×16 8×8×400 8×8×400 8×8×4

Te
st

in
g

Te
st

in
g

Tr
ai

ni
ng

Images from: deeplearning.ai, C4W3L04
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Replacing Sliding Windows w/Fully Convolutional CNNs

28×28×3 24×24×16 12×12×16 8×8×400 8×8×400 8×8×4

Sliding window approach:
Sequentially evaluate one 
window at a time

Fully convolutional approach:
Evaluate 64 regions at once

Images from: deeplearning.ai, C4W3L04
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Replacing Sliding Windows w/Fully Convolutional CNNs

28×28×3 24×24×16 12×12×16 8×8×400 8×8×400 8×8×9

• Can think of this as evaluating 
8×8 grid,  where each of the 64 
cells is independently checked for 
an object:

Each cell has 
a y label: ! =

#$
%&
%'
%(
%)
*+
*,
*-
*.

Prob. of an object

Object location

0/1 for each class
(Four classes in this example)
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Replacing Sliding Windows w/Fully Convolutional CNNs

28×28×3 24×24×16 12×12×16 8×8×400 8×8×400 8×8×9

• Overlay GT of object
• Cell where centroid lie is 

responsible.

Each cell has 
a y label: ! =

#$
%&
%'
%(
%)
*+
*,
*-
*.

Prob. of an object

Object location

0/1 for each class
(Four classes in this example)
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Replacing Sliding Windows w/Fully Convolutional CNNs

28×28×3 24×24×16 12×12×16 8×8×400 8×8×400 8×8×9

!1 =

0
?
?
?
?
?
?
?
?

!44 =

1
0.8
0.9
2.0
1.8
0
1
0
0

! =

+,
-.
-/
-0
-1
23456
2,75
2859,:
2;<8<5,

!2 =

0
?
?
?
?
?
?
?
?

Note1: cell upper left (0,0); cell lower right (1,1)
Note2: bw and bh can be > 1.0

… …
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Andrew Ng, 2017

https://www.deeplearning.ai/

Deep Learning Specialization,
Five courses:
1. Neural Networks and Deep Learning
2. Improving Deep Neural Networks
3. Structured Machine Learning Projects
4. Convolutional Neural Networks
5. Sequence Models
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Li, Johnson, Yeung 2017
http://cs231n.stanford.edu/ l
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