

Memory-Augmented Attention Model for Scene Text Recognition

Cong Wang^{1,2}, Fei Yin^{1,2}, Cheng-Lin Liu^{1,2,3}

¹ National Laboratory of Pattern Recognition Institute of Automation, Chinese Academy of Sciences ² University of Chinese Academy of Sciences ³ CAS Center for Excellence of Brain Science and Intelligence Technology

Outline

Introduction

Motivation and the proposed method

Experiments

Introduction

Scene text recognition

- Bottom-up based methods
 - Detect individual characters and treat isolated character classification and subsequent word recognition separately.
- ➢ Top-down based methods
 - The entire text from the original image is directly recognized.
- State-of-the-art methods
 - Model scene text recognition as a sequence recognition problem
 - CTC framework
 - Attention mechanism

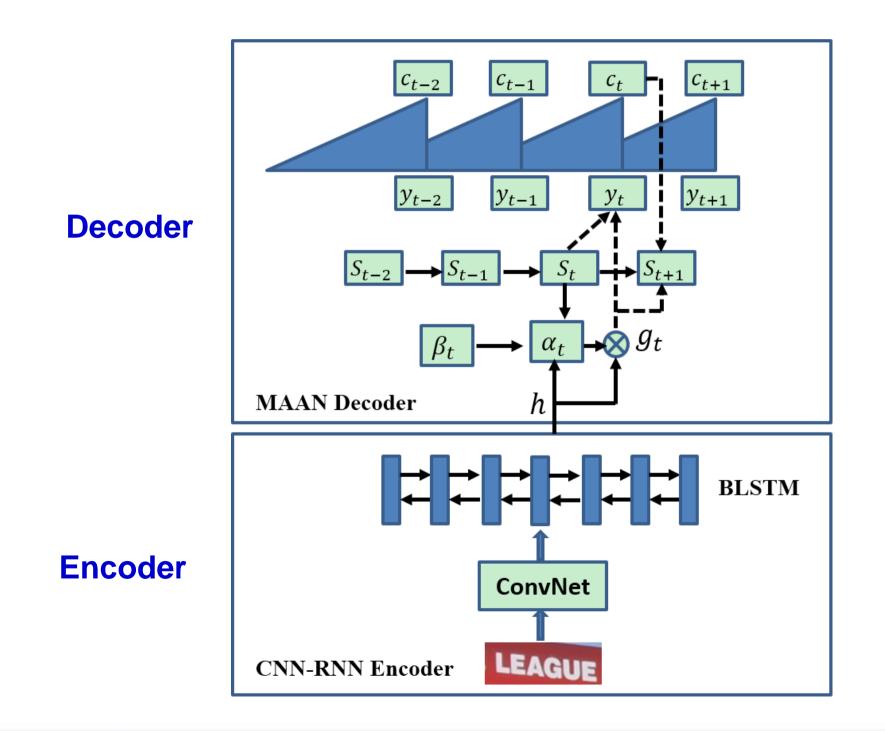
Motivation

- They explicitly use the character label information only at the (t-1)-th time step when predicting the character at the t-th time step.
- > They do not make full use of the past alignment information.
- Solution

Propose a memory-augmented attention network (MAAN)

- Augment the memory for historical label information.
- Make full use of the alignment history.

■ The architecture of the proposed MAAN model

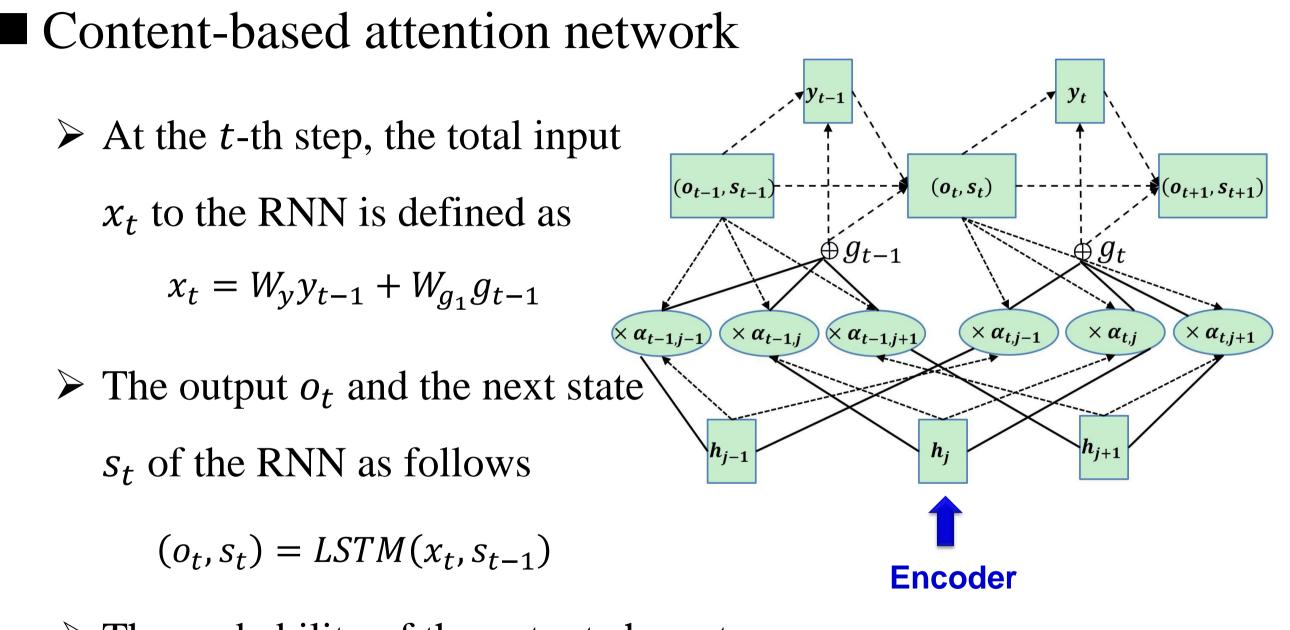


Sequence encoder

Table. The architecture of resnet-based CNN we adopt for feature extraction

Layer name	32 layers	Output size
Convolution	$3 \times 3, 1 \times 1, 1 \times 1, 32$	32×100
Convolution	$3 \times 3, 1 \times 1, 1 \times 1, 64$	32×100
Max-pooling	$2 \times 2, 2 \times 2, 0 \times 0$	16×50
Residual unit	$\begin{bmatrix} 3 \times 3, 128 \\ 3 \times 3, 128 \end{bmatrix} \times 1$	16×50
Convolution	$3 \times 3, 1 \times 1, 1 \times 1, 256$	16×50
Max-pooling	$2 \times 2, 2 \times 2, 0 \times 0$	8×25
Residual unit	$\begin{bmatrix} 3 \times 3, 256 \\ 3 \times 3, 256 \end{bmatrix} \times 2$	8×25
Convolution	$3 \times 3, 1 \times 1, 1 \times 1, 256$	8×25
Max-pooling	$1 \times 2, 1 \times 2, 0 \times 0$	4×25
Residual unit	$\begin{bmatrix} 3 \times 3, 512 \\ 3 \times 3, 512 \end{bmatrix} \times 5$	4×25
Convolution	$3 \times 3, 1 \times 1, 1 \times 1, 256$	4×25
Residual unit	$\begin{bmatrix} 3 \times 3, 512 \\ 3 \times 3, 512 \end{bmatrix} \times 3$	4×25
Convolution	$3 \times 3, 1 \times 2, 1 \times 1, 512$	2×25
Convolution	$2 \times 2, 1 \times 2, 0 \times 0, 512$	1×24

Input image size



 \triangleright The probability of the output character y_t

 $P(y_t|y_1, \cdots, y_{t-1}, h) = softmax(W_o o_t + W_{g_2}g_t) \in \mathbb{R}^N$

• Where *N* is the number of the character classes.

Content-based attention network

 \succ Glimpse vector g_t is defined as

$$g_t = \sum_{j=1}^L \alpha_{t,j} h_j$$

- Where $h = [h_1, \dots, h_L]$ is the sequential input representation.
- \succ The vector of attention weights α_t is defined as

$$e_{t,j} = v^T tanh \big(Ws_t + Vh_j + b \big)$$

$$\alpha_{t,j} = \frac{exp(e_{t,j})}{\sum_{k=1}^{L} exp(e_{t,k})}$$

Memory-augmented attention network

> Augment the memory for historical label information

• Have access to the *k* previous characters by a one dimensional convolution

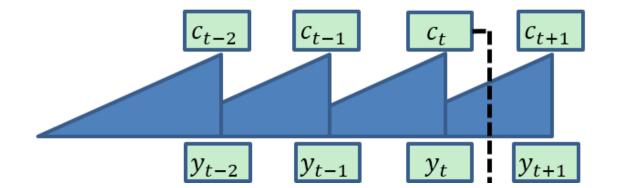
$$c_{t-1} = v (W_{glu}[y_{t-k}; \cdots; y_{t-1}] + b_{glu}) + y_{t-1}$$

• Gated linear units (GLU)

$$v([A \ B]) = A \otimes \sigma(B)$$

• The total input to the RNN at the *t*-th time step is defined as

$$x_t = W_c c_{t-1} + W_{g_1} g_{t-1} \quad \checkmark$$



Memory-augmented attention network

➤ Make full use of the alignment history

• Append a coverage vector f_i to keep the track of the past alignment information and augment the memory for the alignment history.

$$\beta_t = \sum_{l}^{t-1} \alpha_l$$
$$F = Q \star \beta_t$$

• The attention weights vector at the *t*-th time step:

$$e_{t,j} = v^T tanh (Ws_{t-1} + Vh_j + Uf_j + b)$$

• Guide the attention model to assign higher attention weights to the unfocused elements of the sequential input representation *h*.

Training

Loss function

$$\mathcal{L} = -\sum_{t} ln P(\hat{\mathbf{y}}_{t} | I, \theta)$$

Transcription

- Lexicon-free transcription
 - Greedy decoding
 - Straightforwardly select the most probable character at each time step.
- Lexicon-based transcription
 - Choose the sequence in the lexicon that has smallest edit distance with the predicted label sequence via lexicon-free transcription.

Experiments

Datasets

➤ Training set

- Use the synthetic dataset (Synth) ^[1] for training
- Synth dataset contains 8-million training images with corresponding ground truth words.

≻ Test set

- IIIT5K-Words (IIIT5K)
- Street View Text (SVT)
- ICDAR 2003 (IC03)
- ICDAR 2013 (IC13)

[1] M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zisserman, "Synthetic data and artificial neural networks for natural scene text recognition," *arXiv preprint arXiv:1406.2227*, 2014.

Experiments

Implementation details

Apply Momentum optimization algorithm with momentum = 0.9 to train the proposed model.

 \succ The mini-batch size is set to 64.

- The learning rate is initially set to 0.02 and is decreased to 0.01 and 0.005 respectively after 150K mini-batch and 250K mini-batch.
- All the images in both training set and test set are resized to 32×100. Our model converges in 2 two days after about 3 epochs over the training set.
- The proposed model is implemented with Tensorflow framework and all our experiments are carried out on a workstation with one Titan X GPU.

Performance on Benchmarks

Method	IIIT5K		SVT		IC03			IC13	
wieulou	50	1k	None	50	None	50	Full	None	None
ABBYY [2]	24.3	-	-	35.0	-	56.0	55.0	-	-
Wang et al. [2]	-	-	-	57.0	-	76.0	62.0	-	-
Mishra et al. [27]	64.1	57.5	-	73.2	-	81.8	67.8	-	-
Wang et al. [30]	-	-	-	70.0	-	90.0	84.0	-	-
Goel et al. [31]	-	-	-	77.3	-	89.7	-	-	-
Bissacco et al. [4]	-	-	-	90.4	78.0	-	-	-	87.6
Alsharif and Pineau [32]	-	-	-	74.3	-	93.1	88.6	-	-
Almázan et al. [6]	91.2	82.1	-	89.2	-	-	-	-	-
Yao et al. [5]	80.2	69.3	-	75.9	-	88.5	80.3	-	-
Rodrguez-Serrano et al. [33]	76.1	57.4	-	70.0	-	-	-	-	-
Jaderberg et al. [34]	-	-	-	86.1	-	96.2	91.5	-	-
Su and Lu [9]	-	-	-	83.0	-	92.0	82.0	-	-
Jaderberg et al. [7]	97.1	92.7	-	95.4	80.7	98.7	98.6	93.1*	90.8
Jaderberg et al. [8]	95.5	89.6	-	93.2	71.7	97.8	97.0	89.6	81.8
Shi et al. [11]	97.8	95.0	81.2	97.5	82.7	98.7	98.0	91.9	89.6
Shi et al. [16]	96.2	93.8	81.9	95.5	81.9	98.3	96.2	90.1	88.6
Lee et al. [15]	96.8	94.4	78.4	96.3	80.7	97.9	97.0	88.7	90.0
Yin et al. [13]	98.9	96.7	81.6	95.1	76.5	97.7	96.4	84.5	85.2
Cheng et al. [17] (baseline)	98.9	96.8	83.7	95.7	82.2	98.5	96.7	91.5	89.4
Gao et al. [14]	99.1	97.9	81.8	97.4	82.7	98.3	96.2	90.1	88.6
Baseline	98.0	95.5	83.1	97.2	82.8	97.1	95.9	91.4	90.3
MAAN	98.3	96.4	84.1	96.4	83.5	97.4	96.4	92.2	91.1

* Note that "Baseline" refers to the system with standard attention model (content-based attention network).

Experiments

Some examples of lexicon-free scene text recognition

Conclusion

Main contributions

- ➢ We propose a memory-augmented attention model for scene text recognition which augments the memory for historical label information and make full use of the alignment history.
- > The whole network can be trained end-to-end.
- Experimental results on several benchmark datasets demonstrate that the proposed method achieves a comparable or even better performance compared with state-of-the-art methods.

Future work

Make a further research on more efficient sequence learning model for scene text recognition.

Thanks for your attention!

