

Distilling GRU with Data Augmentation for Unconstrained Handwritten Text Recognition

Reporter: Zecheng Xie South China University of Technology August 6, 2018

- Problem Definition
- Multi-layer Distilling GRU
- Data Augmentation
- Experiments
- Conclusion

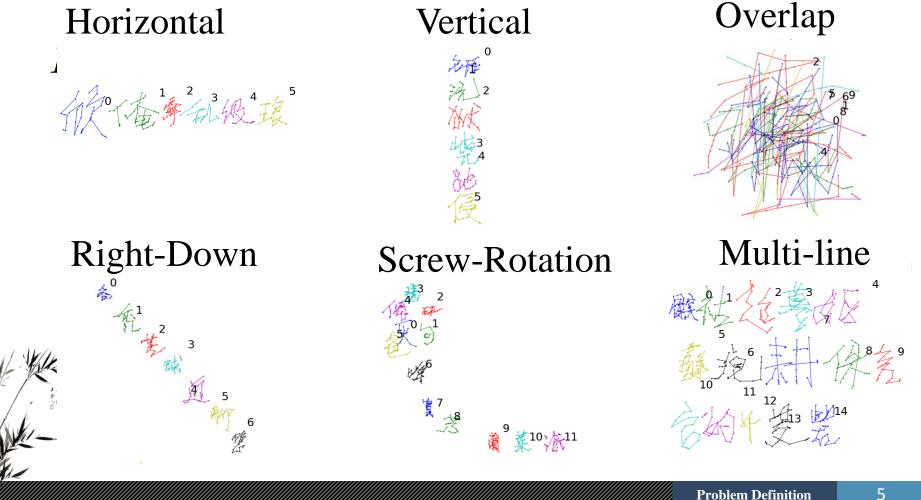
- Problem Definition
- Multi-layer Distilling GRU
- Data Augmentation
- Experiments
- Conclusion

Problem Definition

Motivation

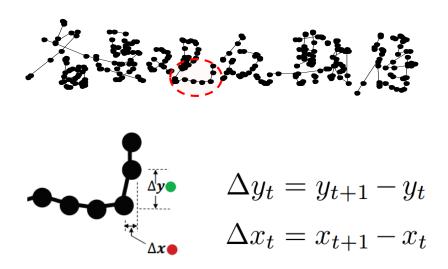
- Handwritten texts with various styles, such as horizontal, overlapping, vertical, and multi-lines texts, are commonly observed in the community.
- Most existing handwriting recognition methods only concentrate on one specific kind of text style.

The new unconstrained online handwritten text recognition problem



Problem Definition

The New Unconstrained OHCTR Problem



Problem Definition

Novel Perspective

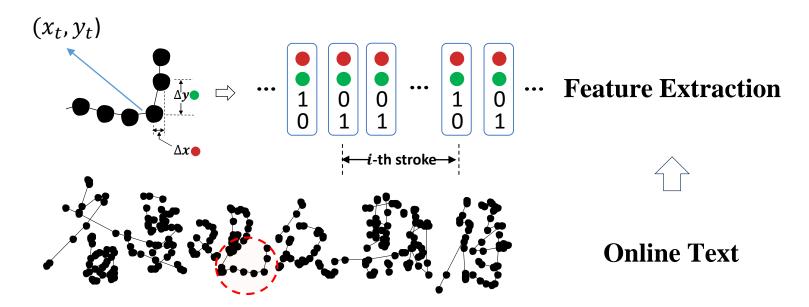
Why not focusing on the variation between adjacent points^[14,15].

More stable than the pen-tip coordinate —distribute between a specific bound for most situations.

The unconstrained text of multiple styles share a very similar feature pattern, the only difference between different text styles is the pen-tip movement between characters.

[14] X. Zhang, *et al.* "Drawing and recognizing Chinese characters with recurrent neural network," IEEE transactions on pattern analysis and machine intelligence, 2018.

[15] L. Sun, et al. "Deep lstm networks for online Chinese handwriting recognition, in ICFHR 2016.



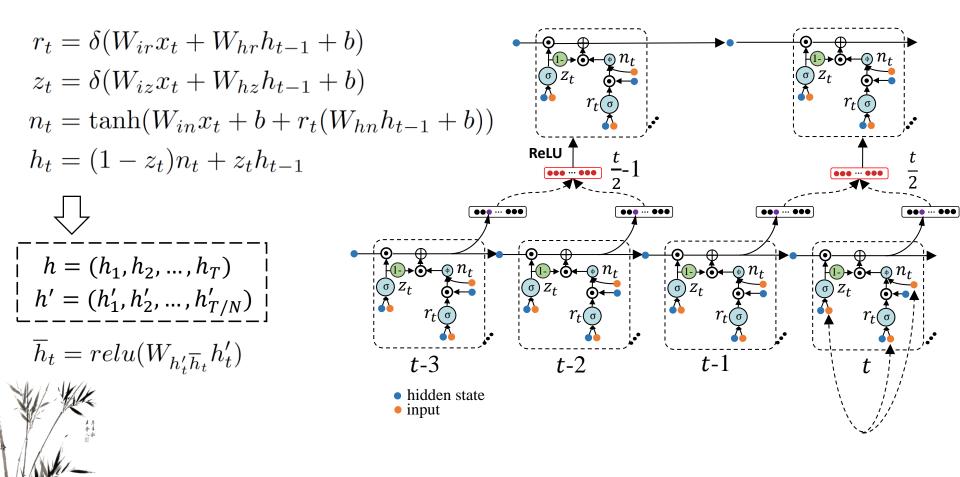
- Problem Definition
- Multi-layer Distilling GRU
- Data Augmentation
- Experiments
- Conclusion

Feature Extraction

Sampling Points \rightarrow Pen-tip Movement \rightarrow Pen down\up state

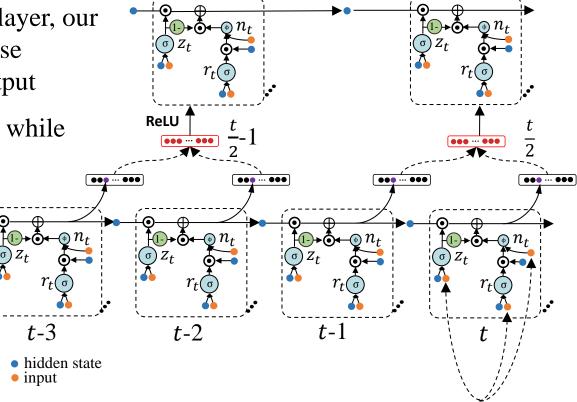
Multi-layer Distilling GRU

Distilling GRU


- GRU can only output feature sequence with the same time step as that of the input data
 - greatly burden the framework if directly applied in text recognition problem.

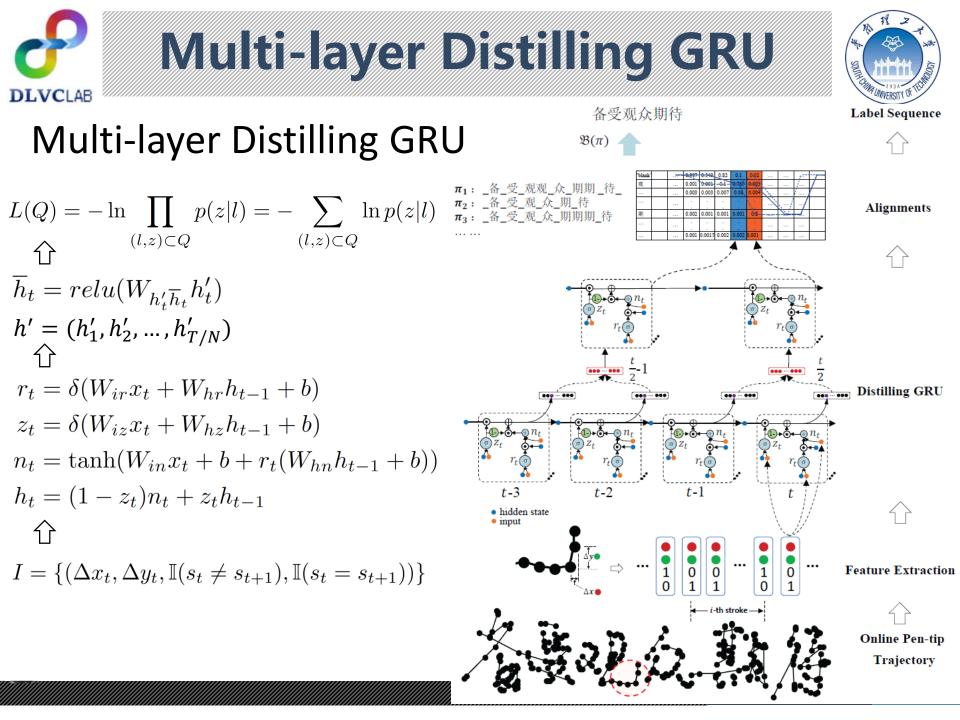
How to accelerate the training process while not sacrifice performance.

Distilling GRU



Distilling GRU

- Unlike the traditional pooling layer, our distilling operation does not lose information from the GRU output
- Accelerate the training process while not sacrifice any performance.



Transcription

'blank'		0.907	0 349		0.1	0.82		0.02			π :_备_受_观观_众_期期_待_ π :_备_受_观_众_期_待
观		0.001	0.001	ļ		0.1		0.003			π :_备_受_观_众_期期期_待
		0.003	0.003	•••	0.08	0.007		0.004			e e
					•						ℜ ∎
期		0.002	0.001	•••	0.001	0.001					备受观众期待
			•		•	•		•	•••		$Pr(\boldsymbol{l} \boldsymbol{s}) = \sum Pr(\boldsymbol{\pi} \boldsymbol{s})$
		0.001	0.0015		0.002	0.002		0.001			$\pi:\mathfrak{B}(\pi)=l$

- Problem Definition
- Multi-layer Distilling GRU
- Data Augmentation
- Experiments
- Conclusion

Data Augmentation

Horizontal $\begin{cases} \Delta x_i^h = (x_i^{max} - x_i^l) + (x_{i+1}^{min} - x_{i+1}^f) + \Delta x_r \\ \Delta y_i^h = y_{i+1}^f - y_i^l + \Delta y_r \end{cases}$

Vertical $\begin{cases} \Delta x_i^v = x_{i+1}^J - x_i^l + \Delta x_r \\ \Delta y_i^v = (y_i^{max} - y_i^l) + (y_{i+1}^{min} - y_{i+1}^f) + \Delta y_r \end{cases}$ Overlapping $\begin{cases} \Delta x_i^o = (x_i^{min} - x_i^l) + (x_{i+1}^f - x_{i+1}^{min}) + \Delta x_r \\ \Delta y_i^o = (y_i^{min} - y_i^l) + (y_{i+1}^f - y_{i+1}^{min}) + \Delta y_r \end{cases}$

 $\text{Multi-lines} \quad \left\{ \begin{array}{l} \Delta x_i^s = \Delta x_i^h cos(r) + \Delta y_i^h cos(r) \\ \Delta y_i^s = -\Delta x_i^h sin(r) + \Delta y_i^h cos(r) \\ r_t = r_{t-1} + \frac{\pi}{2\sqrt{t}}, r_0 = \frac{\pi}{5} \end{array} \right.$

Screw rotation $\begin{cases} \Delta x_{i}^{r} = (x_{i}^{max} - x_{i}^{l}) + (x_{i+1}^{min} - x_{i+1}^{f}) + \Delta x_{r} \\ \Delta y_{i}^{r} = (y_{i}^{max} - y_{i}^{l}) + (y_{i+1}^{min} - y_{i+1}^{f}) + \Delta y_{r} \end{cases}$

 $\Delta x_i, \Delta y_i$: pen movement between the *i* and *i* + 1-th characters.

 x_i^{min} , x_i^{max} :the minimum and maximum x-coordinate value of the i-th character.

 x_{i}^{f}, x_{i}^{l} : the x-coordinate values of the first and last points of the i-th character.

 Δx_r :a random bias generated from an even distribution between (-2, 13).

 Δx_{line} :text line length that can be adjusted according to practical situation.

All the abovementioned definitions also apply for the Yaxis.

- Problem Definition
- Multi-layer Distilling GRU
- Data Augmentation
- Experiments
- Conclusion

Experiments

• Training Data CASIA-OLHWDB2.0-2.2^[1] Synthetic Unconstrained Data by CASIA-OLHWDB1.0-1.2^[1]

• Testing Data

ICDAR2013 Test Dataset^[2] Synthetic Unconstrained Data by CASIA-OLHWDB1.0-1.2^[1]

• Network

2-Layers Distilling GRU, Distilling Rate=0.25

• Hardware

GeForce Titan-X GPU

Convergence time $208h \rightarrow 95h$

 C. Liu., et al, "CASIA online and offline Chinese handwriting databases," 2011 International Conference on Document Analysis and Recognition (ICDAR), pp. 37–41, 2011

[2] Yin F., et al, "ICDAR 2013 Chinese handwriting recognition competition," ICDAR2013, pp. 1464–1470.

TABLE I

EFFECT OF DISTILLING GRU AND SYNTHETIC SAMPLE.

Methods	Accuracy Rate	Training Time (hour)			
baseline	88.31	208			
+distilling GRU	88.33	95			
+horizontal text	91.36	102			

TABLE II

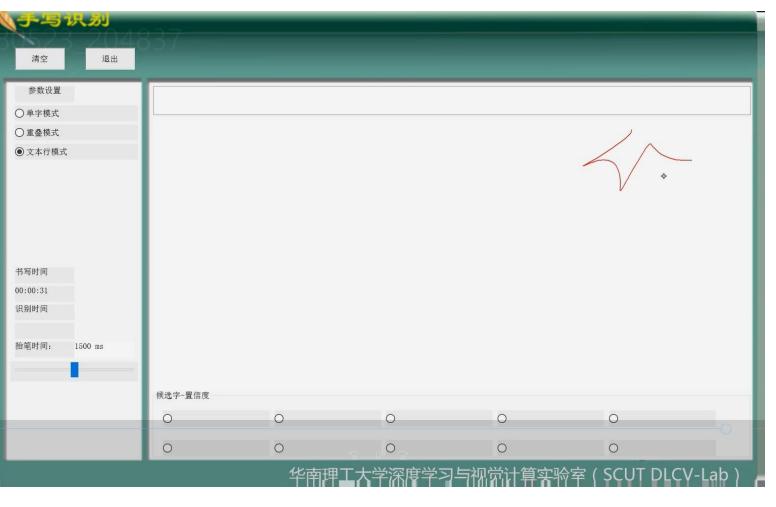
Synthetic Unconstrained Text Samples of Various Style.

Text Styles	Casia	Casia+'hvo'	Casia+'hvorsm'
ICDAR2013	88.33	90.57	90.62
horizontal	30.67	91.93	92.61
vertical	0.76	93.32	93.30
overlap	1.41	92.23	91.98
right-down	23.31	91.40	93.74
screw-rotation	16.00	87.89	92.89
multi-line	24.62	90.26	91.94

Corresponding text style synthetic data is used for result marked with blue color.

TABLE IIIComparison with Previous Methods

Method	W.O.	LM	with LM	
WICHIOU	CR	AR	CR	AR
Zhou et al., 2013 [3]	-	-	94.62	94.06
Zhou et al., 2014 [4]	-	-	94.76	94.22
VO-3 [24]	-	-	95.03	94.49
xie et al., 2017 [29]	90.17	88.88	94.51	93.45
Chen et al.,2017 [30]	85.17	84.61	96.71	96.46
ours	92.37	91.36	95.70	94.89


[3] X. Zhou., *et al*, IEEE TPAMI, vol. 35, no. 10, pp. 2413–2426, 2013.
[4] X. Zhou., *et al*, Pattern Recognition[J], 2014, 47(5): 1904-1916
[29] Z. Xie., *et al*, IEEE TPAMI, 2017
[30] K. Chen, *et al*, in ICDAR 2017, vol. 1. IEEE, 2017, pp. 1068–1073.

Demo

- The new unconstrained text recognition problem is suggested to advance the handwritten text recognition community.
- A special perspective of the pen-tip trajectory is suggested to reduce the difference between texts of multiple styles.
- A new data augmentation method is developed to synthesize unconstrained handwritten texts of multiple styles
- A Multi-layer distilling GRU is proposed to process the input data in a sequential manner

Achieves state-of-the-art results on ICDAR2013 text competition dataset but also shows robust performance on our synthesized handwritten test sets.

Thank you!

Lianwen Jin(金连文), Ph.D, Professor

<u>eelwjin@scut.edu.cn</u> <u>lianwen.jin@gmail.com</u>

Zecheng Xie(谢泽澄), Ph.D, student

Manfei Liu(刘曼飞), Master, student

