Parsimonious HMMs for Offline Handwritten Chinese Text Recognition

Wenchao Wang, **Jun Du** and Zi-Rui Wang University of Science and Technology of China

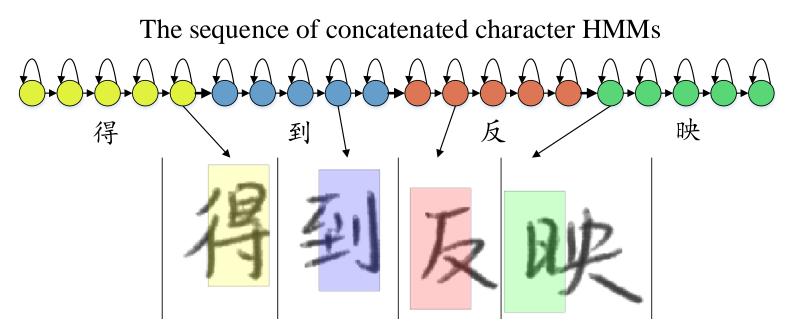
ICFHR 2018, Niagara Falls, USA, Aug. 5-8, 2018

Background

- Offline handwritten Chinese text recognition (OHCTR) is challenging
 - No trajectory information in comparison to the online case
 - Large vocabulary of Chinese characters
 - Sequential recognition with the potential segmentation problem
- Approaches
 - Oversegmentation approaches
 - Character oversegmentation/classification
 - Segmentation-free approaches
 - GMM-HMM: Gaussian mixture model hidden Markov model
 - MDLSTM-RNN: Multidimensional LSTM-RNN + CTC
 - DNN-HMM: Deep neural network hidden Markov model

Review of HMM Approach for OHCTR

- Left-to-right HMM is adopted to represent Chinese character.
- The character HMMs are concatenated to model the text line.



The observation sequence of sliding windows

Review of DNN-HMM Approach for OHCTR

• The Bayesian framework

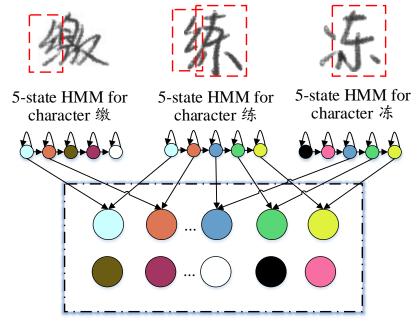
 $\hat{\mathbf{C}} = \arg \max_{\mathbf{C}} p(\mathbf{C} \mid \mathbf{X}) = \arg \max_{\mathbf{C}} p(\mathbf{X} \mid \mathbf{C}) P(\mathbf{C}) \longrightarrow \text{Character modeling}$

$$p(\mathbf{X} \mid \mathbf{C}) = \Sigma_{S} \left[p(\mathbf{X} \mid S, \mathbf{C}) p(S \mid \mathbf{C}) \right]$$
$$= \Sigma_{S} \left[\pi(s_{0}) \prod_{t=1}^{T} a_{s_{t-1}s_{t}} \prod_{t=0}^{T} p(\mathbf{x}_{t} \mid s_{t}) \right] \longrightarrow \text{Output distribution}$$

 $p(\mathbf{x}_t|s_t) = \frac{p(s_t|\mathbf{x}_t)p(\mathbf{x}_t)}{p(s_t)} \longrightarrow \text{DNN to calculate state posterior probability}$

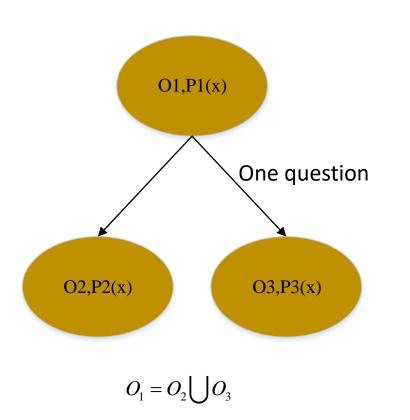
Motivation

- High demand of **memory** and **computation** from DNN output layer
- Model redundancy due to similarities among different characters
- Parsimonious HMMs to address these two problems
- Decision tree based two-step approach to generate tied-state pool



Tied-state Pool

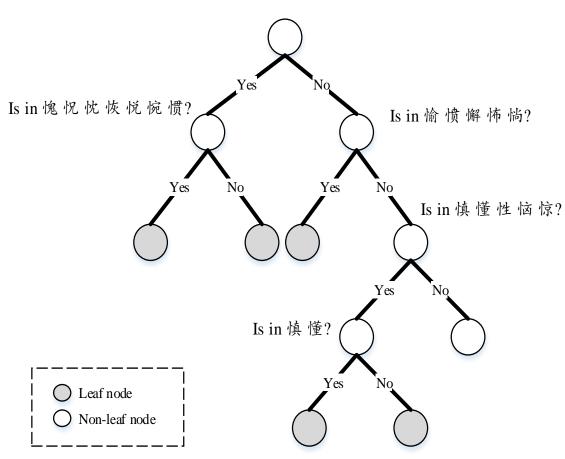
Binary Decision Tree for State Tying



- The parent set O_1 has a distribution $P_1(x)$, the total log-likelihood of all observations in O_1 on the distribution of $P_1(x)$ is: $L(O_1) = \sum_{x \in O_1} \log(P_1(x))$
- The child set O_2 has a distribution $P_2(x)$, the total log-likelihood of all observations in O_2 on the distribution of $P_2(x)$ is: $L(O_2) = \sum_{x \in O_2} \log(P_2(x))$
- The child set O_3 has a distribution $P_3(x)$, the total log-likelihood of all observations in O_3 on the distribution of $P_3(x)$ is: $L(O_3) = \sum_{x \in O_3} \log(P_3(x))$
- The total increase in set-conditioned log-likelihood of observations due to partitioning is: $L(O_2) + L(O_3) - L(O_1)$

Step 1: Clustering Characters with Decision Tree

Is in 愧 怀 怳 忧 快 忱 恍 恢 悦 惋 惯?



A tree fragment for tying the first state of HMM

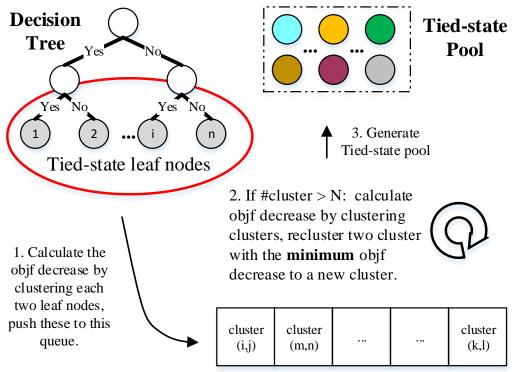
- All states with the same HMM position are initially grouped together at the root node.
- Each node is then recursively partitioned to **maximize** the increase in expected log-likelihood with question set.

$$L(\mathbf{x}) = E \left[\log \mathcal{N} (\mathbf{x}; \mu, \boldsymbol{\Sigma}) \right]$$

= $-\frac{1}{2} E \left[(\mathbf{x} - \mu)^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \mu) + \log((2\pi)^{D} |\boldsymbol{\Sigma}|) \right]$
= $-\frac{1}{2} \left[(1 + \log(2\pi))D + \log |\boldsymbol{\Sigma}| \right]$

• All states in the leaves of the decision tree are tied together.

Step 2: Bottom-up Re-clustering



Minimum Priority Queue

- In the second step, the clusters in leaf nodes obtained in the first step is re-clustered by a bottom-up procedure using sequential greedy optimization.
- The expected log-likelihood decrease by combining every two clusters is calculated.
- A minimum priority queue is maintained to re-cluster the two clusters with minimum log-likelihood decrease to a new cluster.

Training Procedure for Parsimonious HMMs

- 1. Training conventional GMM-HMM system
- 2. Calculating the first-order and second-order statistics based on state-level forced-alignment
- 3. Two-step algorithm:
 First-step: Building the state-tying tree
 Second-step: Re-clustering the tied-states based on the first-step
- 4. Parsimonious GMM-HMMs training based on the tied states
- 5. Parsimonious DNN-HMMs training based on the tied states

Experiments

• Training set

CASIA-HWDB database including HWDB1.0, HWDB1.1, HWDB2.0-HWDB2.2

• Test set

ICDAR-2013 competition set.

- Vocabulary: 3980 character classes
- GMM-HMM system
 - Each character modeled by a left-to-right HMM with 40-component GMM
 - Gradient-based features followed by PCA to obtain a 50-dimensional vector
- DNN-HMM system
 - 350-2048-2048-2048-2048-2048-2048-3980*N
- DNN-PHMM system
 - 350-2048-2048-2048-2048-2048-2048-M

HMM vs. PHMM

Table I THE CER(%) COMPARISON OF HMM SYSTEMS WITH DIFFERENT NUMBER SETTINGS OF TIED-STATES PER CHARACTER N_s .

N_s	5	4	3	2	1			
GMM-HMM	20.04	19.94	21.94	24.92	30.34			
GMM-PHMM	-	19.41	18.83	18.14	18.49			
DNN-HMM	6.73	6.80	7.11	8.21	11.09			
DNN-PHMM	-	6.37	6.31	6.48	7.15			
-								

- Performance saturation with the increase of states for each character
- PHMM outperforming HMM with the same setting of tied-state number
- Parsimoniousness of the best PHMM compared with the best HMM
- Demonstrating the reasonability of the proposed state tying algorithm

HMM vs. PHMM

Table IITHE CER(%) COMPARISON OF HMM SYSTEMS WITH DIFFERENTNUMBER SETTINGS OF TIED-STATES PER CHARACTER $N_s < 1$.

N_s	0.9	0.8	0.7	0.6	0.5
GMM-PHMM	18.66	19.17	19.92	21.28	22.54
DNN-PHMM	7.34	7.50	7.97	8.80	9.52

- Much more compact by setting the number of tied-states per character < 1
- DNN-PHMM (Ns=0.5, 9.52%) outperforming DNN-HMM (Ns=1, 11.09%)

Memory and Computation Costs

Table III

The performance comparison of the best configured DNN-HMM and DNN-PHMM systems with different DNN structures. ($N_{\rm U}$ and $N_{\rm L}$ are the numbers of hidden units and layers, $N_{\rm M}$ and $N_{\rm T}$ are the model size and run-time latency normalized by DNN-HMM with $N_{\rm U}$ =2048 and $N_{\rm L}$ =6.)

$(N_{\rm U}, N_{\rm L})$)	(1024, 4)	(1024, 6)	(2048, 6)	
	CER	7.15	6.91	6.73	
DNN-HMM	N_{M}	0.38	0.42	1	
	$N_{ m T}$	0.82	0.93	1	
	CER	6.78	6.48	6.31	
DNN-PHMM	N_{M}	0.25	0.27	0.74	
	N_{T}	0.28	0.31	0.40	

DNN-PHMM using (1024, 4) setting achieved a comparable CER with DNN-HMM using (2048, 6) setting, 75% of model size and 72% of run-time latency were reduced in DNN-PHMM compared with DNN-HMM.

State Tying Result Analysis

Tied characters								Radical structure	Similar part				
喷	喻	嗅	嗡	吃	咆	哦	哨	嘈	嘲	噬	嚼	Left-right	
客	害	容密寇蜜穷穿突窃窍窑 To		Top-bottom	ř								
圃圆囚囤困围固								Surround					
	E	匝	匠	匡	匣	匪	匹	医	匿	臣		Left-surround	Ľ
诞	巡	边	逊	辽	达	谜	迁	迂	过	近	这	Bottom-left-surround	; ·
		澜	阐	阑	鬲	闸	闻	闽	润			Top-surround	门
串吊甲牢帛早平								Cross					
氛氢氦氨								Top-right-surround	气				

The Chinese characters with the **same or similar radicals** were easily tied using the proposed algorithm. This is the reason that the proposed DNN-PHMM with quite compact design can still maintain high recognition performance.

Thanks!