Fully Convolutional Networks for Handwriting Recognition

Felipe Petroski Such*, Dheeraj Peri*, Frank Brockler†, Paul Hutkowski†, Raymond Ptucha* *Rochester Institute of Technology, †Kodak Alaris,

Kodak alaris

ICFHR 2018

The 16th International Conference on Frontiers in Handwriting Recognition

August 5 - 8, 2018 • Niagara Falls, USA

Background

- Offline handwriting recognition continues to be a difficult process due to the virtually infinite ways the same information can be written.
- Convolutional Neural Networks (CNNs) and have been applied to handwriting recognition with good success.
- Recurrent Neural Networks (RNNs) are useful for arbitrary length sequences and Connectionist Temporal Classification (CTC) are good as a post correction step.

Jam seefly trucked by your kind contribution to my bibliday present a grateful for your good hiches.

I am truly touched by your kind contribution to my birthday presents & grateful for your good wishes.

Note: Some believe the above letter is a forgery.

3

Such et al. ICFHR'18

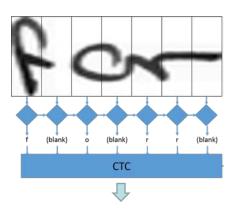
Workflow- Word Extraction Document Segmentation Block Segmentation Wife and the segmentation SegNet or similar labels each pixel by type- can grow to orthogonal boundaries. Modified XY Tree or similar suggests rectilinear splits.

Workflow- Word Recognition

Use both to define paragraphs, sentences and word blocks.

Such et al. ICFHR'18

- Preprocessing
 - Fix skewing, rotation, contrast
- Prediction
 - CNNs, HMM, LSTMs used together
- Post-processing
 - Train & Test: CTC
 - Test: Language Model



for

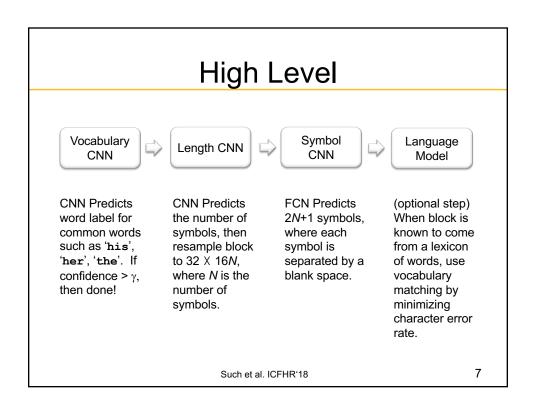
Such et al. ICFHR'18

5

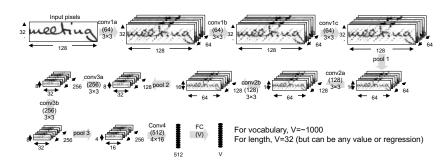
Proposed Method

- · Character classification without the need for:
 - Preprocessing- no deskewing
 - Predefined lexicon of words- can work on surnames, phone numbers, and street addresses
 - Post processing- No RNN or CTC needed
- Utilizes Fully Convolutional Networks (FCNs) to translate arbitrary sequence length.
 - FCNs are faster to train than RNNs and more robust
 - CTC can still be used, but we found them hard to converge
- Single architecture works on arbitrary words as well as words from a lexicon

Such et al. ICFHR'18



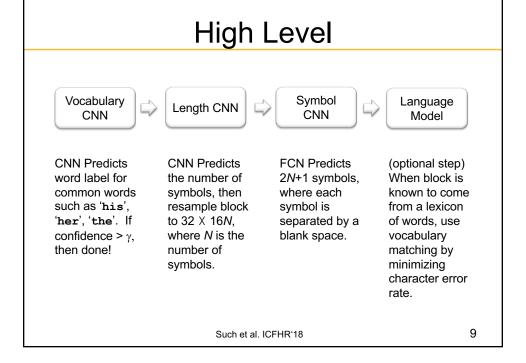
Vocabulary and Length CNNs

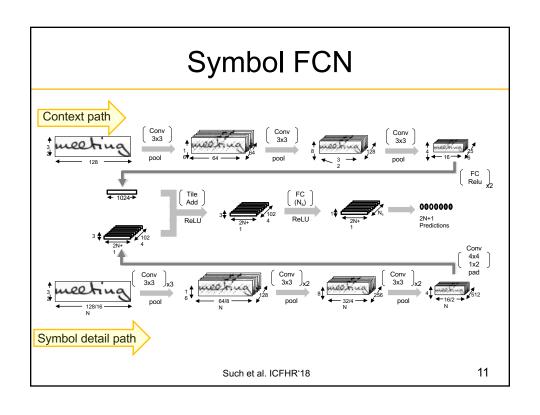


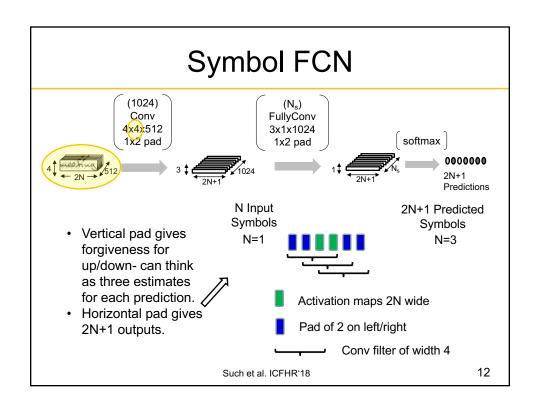
 $C(64,3,3)-C(64,3,3)-C(64,3,3)-P(2)-C(128,3,3)-C(128,3,3)-C(256,3,3)-P(2)-C(256,3,3)-C(512,3,3)-C(512,3,3)-P(2)-C(256,4,16)-FC(V)-SoftMax\ where \\ C(D,H,W)\ stands\ for\ convolution\ with\ the\ dimensions\ of\ the\ filter\ as\ HXW\ and\ the\ depth\ D.\ Each\ convolutional\ layer\ is\ followed\ by\ a\ batch\ norm\ and\ ReLU\ layer.\ P(2)\ represents\ a\ 2\ X\ 2\ pooling\ layer\ with\ stride\ 2.$

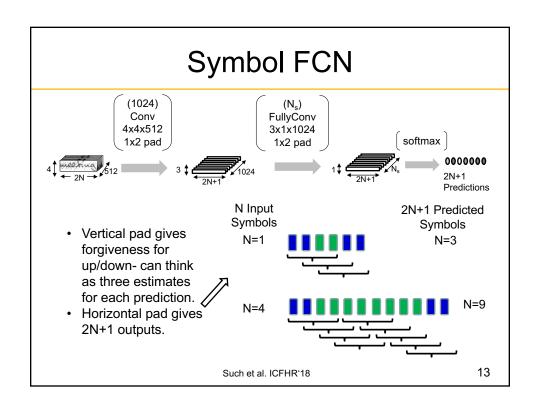
Such et al. ICFHR'18

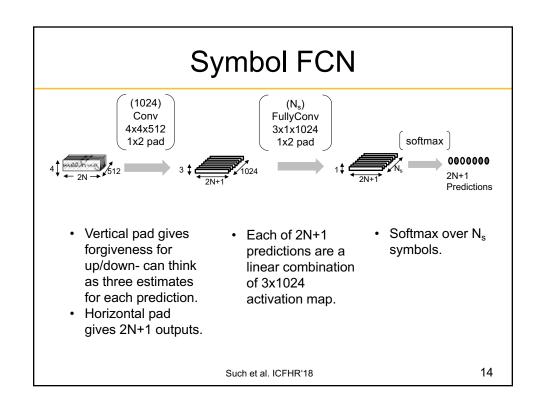
8





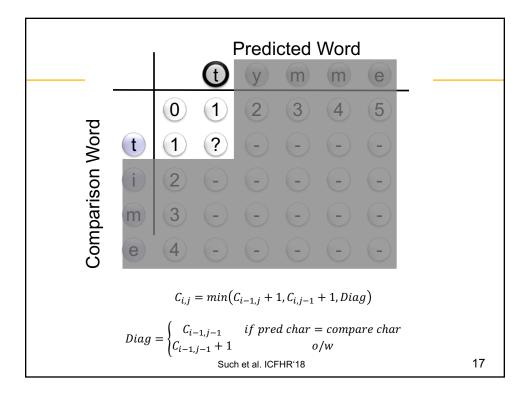


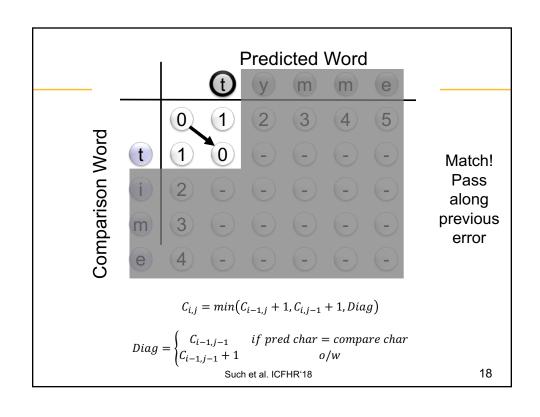


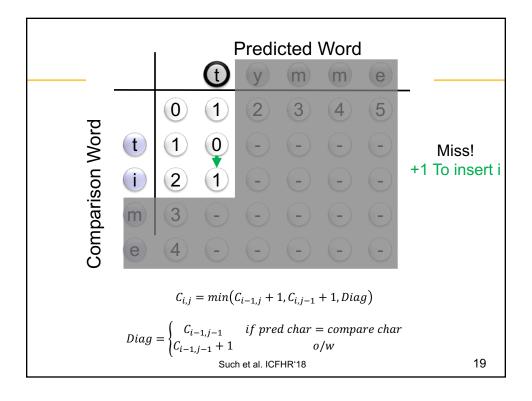


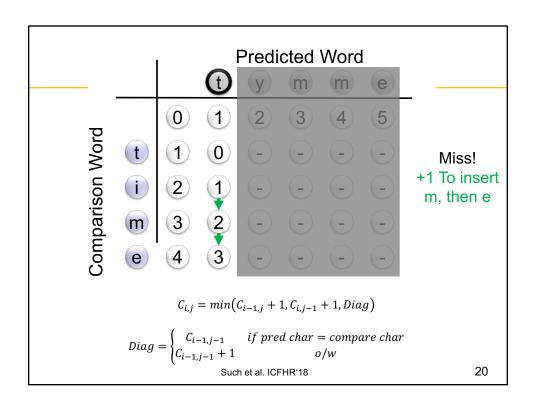
			(†)	Predi	cted	Word	(e)		
Comparison Word	(t) (i) (m) (e)	0 1 2 3 4		2 - - - -	3	4 • • •	5	_	
			Suc	າ et al. ICF	FHR'18				15

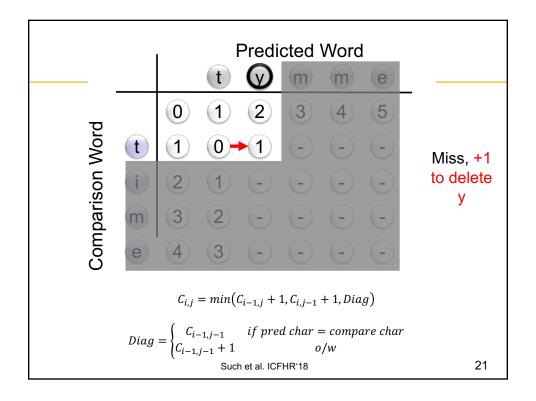
	Predicted Word (t) y m m e	_
Comparison Word	(a) (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	
	$C_{i,j} = min(C_{i-1,j} + 1, C_{i,j-1} + 1, Diag)$ $Diag = \begin{cases} C_{i-1,j-1} & \text{if pred char} = compare char \\ C_{i-1,j-1} + 1 & o/w \end{cases}$	

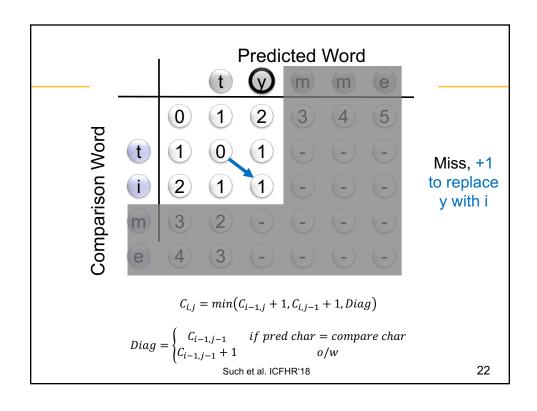


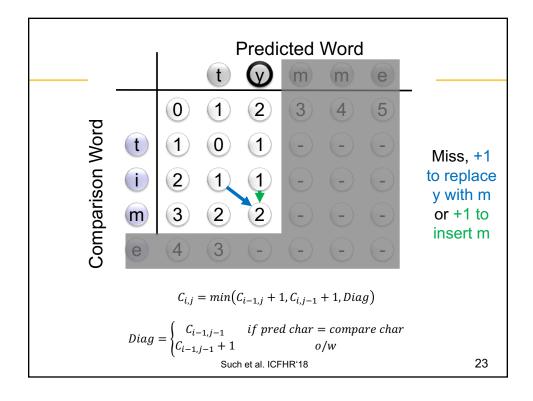


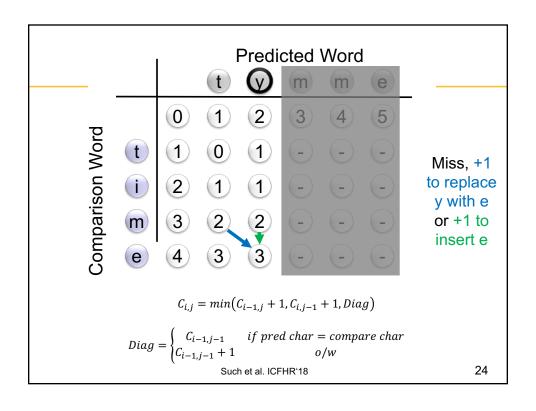


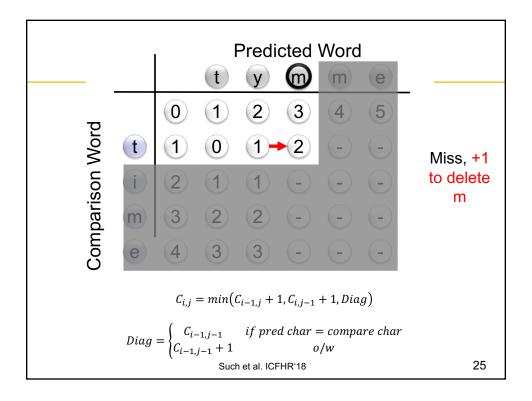


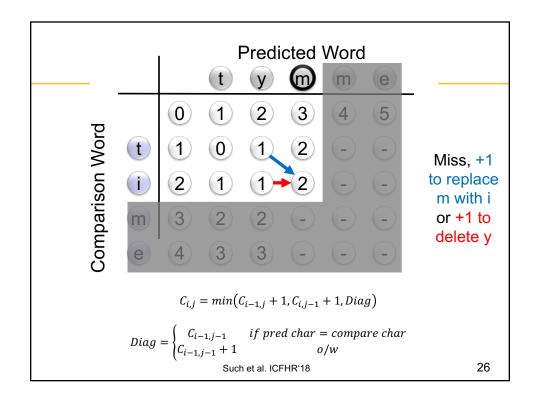


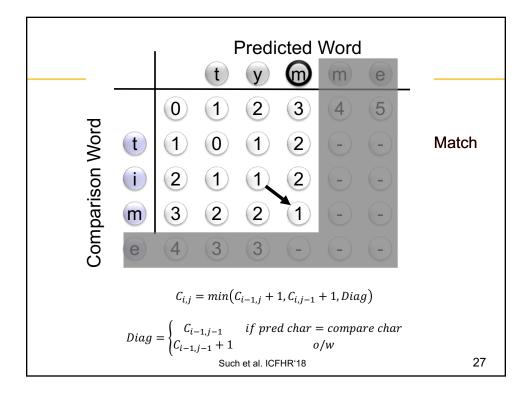


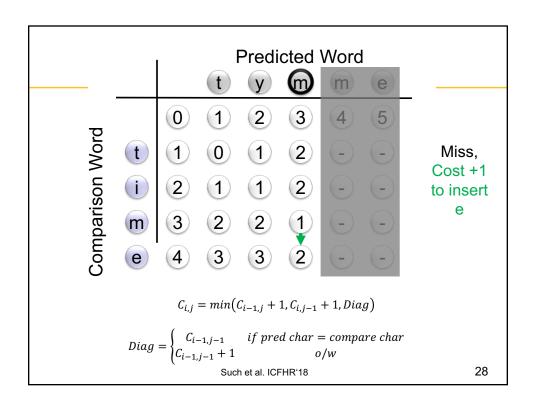




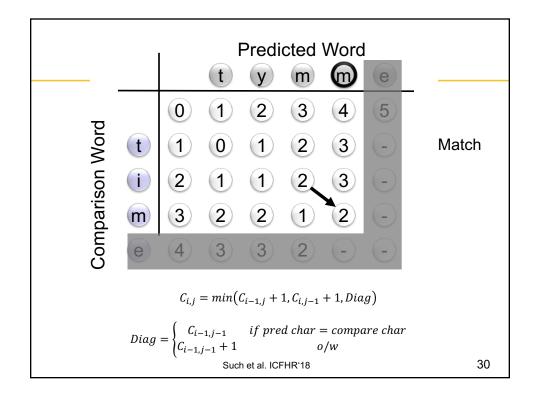












Predicted Word

t y m m e

0 1 2 3 4 5

0 1 2 3 - Miss,

Cost +1

to replace m with e

$$C_{i,j} = min(C_{i-1,j} + 1, C_{i,j-1} + 1, Diag)$$

$$Diag = \begin{cases} C_{i-1,j-1} & \text{if pred char = compare char} \\ C_{i-1,j-1} + 1 & \text{o/w} \end{cases}$$
Such et al. ICFHR'18

	Predicted Word t y m m e 0 1 2 3 4 5 1 1 0 1 2 3 4 1 2 1 1 2 3 4 1 3 2 2 1 2 3 e 4 3 3 2 2 -	Miss, Cost +1 to delete e
	$C_{i,j} = min(C_{i-1,j} + 1, C_{i,j-1} + 1, Diag)$ $(C_{i-1,j-1} if \ pred \ char = compare \ char$	
1	$Diag = \begin{cases} C_{i-1,j-1} & \textit{if pred char} = \textit{compare char} \\ C_{i-1,j-1} + 1 & \textit{o/w} \end{cases}$ Such et al. ICFHR'18	32

			t	Predi	cted	Word	e	
on Word	(t)	012	0	211	322	3	544	Match
Comparison Word	m e	3	2	2	1 2	2	<u>3</u> 2-	Final Cost
	Diaa		•	$C_{i-1,j} + i$ if pre-	,		g) are char	
		$(C_{i-1,i})$		h et al. ICF		/w		33

Datasets

- IAM English handwritten dataset
 - 115,320 English words, mostly cursive, by 500 authors.
 - Comes with train, validation, test splits.
- RIMES French handwritten dataset
 - -60,000 French words by over 1,000 authors.
 - Use ICDAR2011 release and splits
- NIST Handprinted and Forms database
 - -810,000 characters by 3,600 authors

Such et al. ICFHR'18

IAM Results

Model	WER	CER
Dreuw et al. [10]	18.8	10.1
Boquera et al. [11]	15.5	6.90
Kozielski et al. [18]	13.30	5.10
Bluche et al. [5]	11.90	4.90
Doetsch et al. [9]	12.20	4.70
Our work	8.71	4.43
Voigtlaender et al. [30]	9.3	3.5
Poznanski and Wolf [23]	6.45	3.44

HMMS with MLP HMMS with MLP HMM CNN with RNN LSTM w/ CTC

CNN w/ RNN

CNN with pre and post processing, fixed symbol lexicon of only upper and lower case Latin alphabet

☆ (our work): Vocabulary CNN of 1100 words Symbol CNN uses N_s=123 symbols

Such et al. ICFHR'18

35

IAM Results

Input	Label	Prediction	
Hat.	that	that	
had	had	had	
Gro paol	Liverpool	livepool	
OLL	on	oui	
mistaken	mistaken	mistahon	
2	,	,	
Implement	implements	implement	
least	least	least	
nist	mist	mist	
interest	interest	interest	

RIMES Results

Model	WER	CER
Kozielski et al. [18]	13.70	4.60
Doetsch et al. [9]	12.90	4.30
Bluche et al. [5]	11.80	3.70
Our work	5.68	2.22
Poznanski and Wolf [23]	3.90	1.90

HMM LSTM w/ CTC CNN with RNN

CNN with pre and post processing, fixed symbol lexicon of only upper and lower case Latin alphabet

☆ (our work): Vocabulary CNN of 800 words Symbol CNN uses N_s=123 symbols

Such et al. ICFHR'18

37

RIMES Results

Input	Label	Prediction
AUOV	vous	vous
titre	titre	titre
avance	avancé	avance
effet,	effet,	effett
diesine	désire	diésiire
Télénhone	téléphone	télénhone
relevés	relevés	relves
Salutations	salutations	salutations
1' expression	l'expression	l'expression
effectuer	effectuer	effectuer

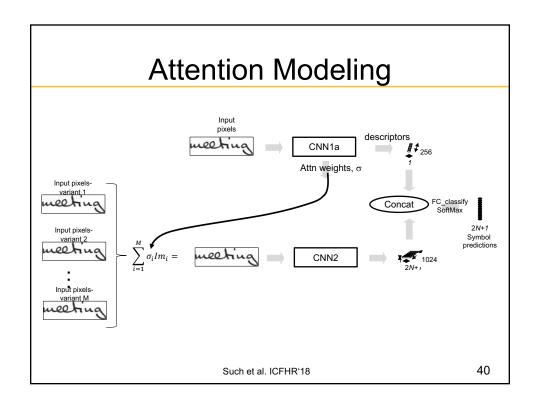
Such et al. ICFHR'18

NIST Results

Input	Label	Prediction		
9/10/1966	9/10/1966	9/10/1966		
(246)344-9702	(246)344-9702	(246)344-9702		
\$864 3/33	\$8643133	\$8643133		
spectrometry	Spectrometry	Spectrometry		
4609/620	+6091620	+6091620		
9284.8A64AE15	92.84.8A.b4.AE.15	92.84.8A.b4AE.15		

92.4% accuracy on a subset of 12,000 word blocks (English, French, and special characters) generated from NIST dataset

Such et al. ICFHR'18



Conclusions

- Introduction of offline handwritten recognition architecture which works with either arbitrary characters or fixed lexicon.
- Vocabulary CNN quickly solves simple words.
- Length CNN forms canonical word suitable for input into Symbol CNN.
- Symbol CNN is a FCN which is indifferent to canonical word length.
- Despite using large character lexicon (123 symbols) and being able to predict arbitrary words such as surnames and phone numbers, generates competitive CER and WER.

Such et al. ICFHR'18

41

Thank you!!

Ray Ptucha rwpeec@rit.edu

https://www.rit.edu/mil

Such et al. ICFHR'18