

INIVERSITÉ DE FRIBOURG INIVERSITÄT FREIBURG

Stan Barnero manklin unch phases Para Offline Signature Verification via **Structural Methods:** Graph Edit Distance and Inkball Models Sherman Huntington Paul Maergner, Nicholas R. Howe, Kaspar Riesen, Rolf Ingold, Andreas Fischer illian 17/08/2018 Nelson p. is Lightfoot Lee Matthew er Braxton

Offline Signature Verification

Statistical vs. Structural Approach

Statistical – Feature vectors

- + large number of mathematical methods available
- fixed-size representation

Statistical vs. Structural Approach

Our Approaches

Statistical – Feature vectors

 $(X_1, ..., X_n)$

- + large number of mathematical methods available
- fixed-size representation

Structural – Graphs

- + flexible representation
- + binary relations
- high computational complexity

Two recent structural approaches

Graph-based Signature Verification Framework Introduced by Maergner et al. at ICDAR 2017 Bipartite approximation of graph edit distance Keypoint graphs

Inkball Models

Introduced by Howe at ICDAR 2013

Rooted tree and efficient matching algorithm

Never been applied to Signature Verification

\rightarrow Use both methods individually and combined

Keypoint graphs vs. Inkball models

Keypoint graphs vs. Inkball models

Both Models – Similar Nodes

End-/Junction points + additional points

Keypoint graphs – Edges

Edges connect neighboring points on the skeleton Not all parts of the graph are connected, contains circles Inkball models – Edges Rooted tree (no circles, all parts are connected)

Nodes are greedily connected to the nearest nodes

→ Similar Representations

Keypoint Graph

Inkball Model

Matching

Graph Edit Distance Approach: Overview

Graph Edit Distance (GED)

GED between g_1 and g_2

$$d(g_1, g_2) = \min_{(e_1, \dots, e_k) \in \Upsilon(g_1, g_2)} \sum_{i=1}^k c(e_i)$$

 $\Upsilon(g_1, g_2)$ Set of edit paths $c(e_i)$ Cost of edit operation e_i Edit operationsSubstitution/deletion/insertion of nodes and edges

Inkball Model Approach: Overview

Inkball matching

Signature Verification Score

Dissimilarity Score d(R,g)

Multiple Classifier System (MCS)

- Simply linear combination with weight α
- Dissimilarity scores are z-score normalized based on reference signatures

$$d_{\text{MCS},\alpha}(R,t) = \min_{r \in R} \left(\alpha \cdot \hat{d}^*_{\text{GED}}(r,t) + (1-\alpha) \cdot \hat{d}^*_{\text{inkball}}(r,t) \right)$$

Evaluation

Evaluation Protocol

Datasets

MCYT-75 and GPDS-75 (GPDSsynthetic-Offline)

Skilled forgeries (SF)

Forgers with access to the genuine signatures

Random forgeries (RF)

Signatures of other users; brute force attack

Two tasks

R5/R10 using 5/10 genuine signatures per user as reference

Evaluation Measure

Equal Error Rate (EER)

	Skilled Forgeries					Random Forgeries					
System	GPDS-75		MCY	MCYT-75		GPDS-75			MCYT-75		
	R5	R10	R5	R10	-	R5	R10		R5	R10	
Maergner et al. ($\alpha = 1.0$, GED app.)	11.96	9.42	20.36	14.40		4.90	3.60		6.25	2.92	
Proposed Inkball $(\alpha = 0.0)$	14.09	10.36	12.98	10.49		7.75	5.51		5.19	3.46	

	Skilled Forgeries				 Random Forgeries					
System	GPDS-75		MCYT-75		 GPDS-75		MCYT-75			
	R5	R10	R5	R10	R5	R10		R5	R10	
Maergner et al. ($\alpha = 1.0$, GED app.)	11.96	9.42	20.36	14.40	4.90	3.60		6.25	2.92	
Proposed Inkball $(\alpha = 0.0)$	14.09	10.36	12.98	10.49	7.75	5.51		5.19	3.46	
Proposed MCS $(\alpha = 0.4)$	9.42	6.84	13.07	8.71	3.66	2.05		3.06	1.24	

Average EER over ten random selections of 10 reference signatures

Sustam	GPDS-75 R10			MCYT-75 R10			
System	RF SF			RF	SF		
Ferrer et al.	0.76*	16.01		0.35*	11.54		
Maergner et al. (GED app.)	2.73	8.29		2.83	12.01		
Proposed Inkball ($\alpha = 0.0$)	5.22	10.64		3.13	8.29		
Proposed MCS ($\alpha = 0.4$)	1.99	<mark>6.67</mark>		1.88	7.20		

*: All genuine signatures of other users as RF

EER Results with a posteriori user-dependent score normalization

Sustam	MCYT-	75 R5	MCYT-	MCYT-75 R10			
System	RF	SF	RF	SF			
Alonso-Fernandez et al.	9.79*	23.78	7.26*	22.13			
Fierrez-Aguilar et al.	2.69**	11.00	1.14**	9.28			
Gilperez et al.	2.18*	10.18	1.18*	6.44			
Maergner et al. (GED app.)	2.40	14.49	1.89	11.64			
Proposed Inkball ($\alpha = 0.0$)	2.88	9.33	2.02	8.53			
Proposed MCS ($\alpha = 0.4$)	0.92	9.07	0.52	5.78			

*: All genuine signatures of other users as RF

**: First 5 genuine signature from each other user as RF

Conclusion

Two structural methods for signature verification inkball models used for the first time

Excellent signature verification performance for skilled forgeries on MCYT-75 and GPDS-75 room for improvement for random forgeries

Combination achieves best results two complementary methods

Outlook

Further develop structural representations other types of nodes and edges improved cost functions

Include stability models

which parts of the structure are stable?

Make matching visible for human expert

Thank you for your attention! Questions?