

Moises Diaz¹

Miguel A. Ferrer² Jose J. Quintana²

¹Universidad del Atlantico Medio, Spain ²Instituto para el Desarrollo Tecnológico y la Innovación en Comunicaciones Universidad de Las Palmas de Gran Canaria, Spain

16th ICFHR, Niagara Fall, August 8th, 2018

Introduction	VSA	Robotic features	Results	Conclusions
Outline				

- 2) Virtual Skeletal Arm model
- 3 Robotic/Anthropomorphic Feature Extraction

4 Results

5 Conclusions

Introduction	VSA	Robotic features	Results	Conclusions
Automatic Si	gnature Ve	erification		

- The signature is analyzed locally
- The signature is represented through timing sequences or functions in diverse domains
- Basic functions: obtained directly from the digital tablet
 - Position: x_n, y_n
 - Pressure: *p_n*
 - Pen-tip angles from the writing area: ϕ_n, ψ_n
- Extended functions
 - Tan angle: $\theta_n = \tan^{-1}(\dot{y}_n/\dot{x}_n)$
 - velocity (module): $v_n = \sqrt{\dot{x}_n^2 + \dot{y}_n^2}$
 - log-radius curvature: $\rho_n = \log(1/k_n) = \log(v_n/\dot{\theta}_n)$
 - acceleration (module): $a_n = \sqrt{t_n^2 + c_n^2} = \sqrt{\dot{v}_n + v_n^2 \theta_n^2}$
 - Time derivatives of the above functions

• ...

A novel feature space for on-line signature verification

- Based on the arm posture when signing: joint *angles* and *positions*
- Physical meaning, simple, fast and verifiable solution
- Designing of a Virtual Skeletal Arm (VSA) model
- Mathematical fundamentals from *forward* and *direct* kinematic in robotics

Introduction	VSA	Robotic features	Results	Conclusions
Quilling				
Outline				

2 Virtual Skeletal Arm model

3 Robotic/Anthropomorphic Feature Extraction

4 Results

5 Conclusions

Introduction	VSA	Robotic features	Results	Conclusions
Virtual Skel	etal Arm (VS	SA) model		

Similarities with the theoretical model

Introduction	VSA	Robotic features	Results	Conclusions
Virtual Skele	tal Arm (VS	SA) model		

Proposal Architecture based on an anthropomorphic robot

We got two sets of timing functions: joint **angle** movements and joint **position**

ICO MEDIO

Introduction	VSA	Robotic features	Results	Conclusions
Outline				

2) Virtual Skeletal Arm model

8 Robotic/Anthropomorphic Feature Extraction

4 Results

5 Conclusions

Diaz, Ferrer, Quintana (UNIDAM, ULPGC)

Coordinate Frames in the VSA

Relationship among them by homogeneous transformation matrices. E.g.:

 ${}^{0}\mathbf{T}_{6}^{i} = \left(\begin{array}{cccc} m_{x}^{i} & o_{x}^{i} & a_{x}^{i} & p_{x}^{i} \\ n_{y}^{i} & o_{y}^{i} & a_{y}^{i} & p_{y}^{i} \\ n_{z}^{i} & o_{z}^{i} & a_{z}^{i} & p_{z}^{i} \end{array}\right)$

- Goal: To calculate the pose of the coordinate frames (CFs) relating to the VSA model, as a function of its joints angles Q(qⁱ_k).
- Strategy: Denavit-Hartenberg (DH) algorithm is widely used.

Table: DH parameters, \mathbf{DH}_{k}^{i}

Joint k	δ_k^i	d_k	a_k	α_k
1	q_1^i	L_1	0	$-\frac{\pi}{2}$
2	$q_2^i - rac{\pi}{2}$	0	L_2	0
3	q_3^i	0	L ₃	$-\frac{\pi}{2}$
4	q_4^i	L_4	0	$\frac{\pi}{2}$
5	q_5^i	0	0	$-\frac{\pi}{2}$
6	q_6^i	L_5	0	0

Introduction	VSA	Robotic features	Results	Conclusions
Forward Kin	ematics			

$$\begin{pmatrix} \mathbf{c} \left(\delta_{k}^{i} \right) & -\mathbf{c} \left(\alpha_{k} \right) \mathbf{s} \left(\delta_{k}^{i} \right) & \mathbf{s} \left(\alpha_{k} \right) \mathbf{s} \left(\delta_{k}^{i} \right) & \mathbf{a}_{k} \mathbf{c} \left(\delta_{k}^{i} \right) \\ \mathbf{s} \left(\delta_{k}^{i} \right) & \mathbf{c} \left(\alpha_{k} \right) \mathbf{c} \left(\delta_{k}^{i} \right) & -\mathbf{s} \left(\alpha_{k} \right) \mathbf{c} \left(\delta_{k}^{i} \right) & \mathbf{a}_{k} \mathbf{s} \left(\delta_{k}^{i} \right) \\ \mathbf{0} & -\mathbf{s} \left(\alpha_{k} \right) & \mathbf{c} \left(\alpha_{k} \right) & \mathbf{d}_{k} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix}$$

$$(1)$$

$${}^{0}\mathsf{T}_{6}^{i} = {}^{0}\mathsf{T}_{1}^{i} \cdot {}^{1}\mathsf{T}_{2}^{i} \cdot {}^{2}\mathsf{T}_{3}^{i} \cdot {}^{3}\mathsf{T}_{4}^{i} \cdot {}^{4}\mathsf{T}_{5}^{i} \cdot {}^{5}\mathsf{T}_{6}^{i}$$

(2)

- Goal: To deduce the joint angle-based features, Q(qⁱ_k), based on the pose of the pen attached to the end of the model.
- Strategy: kinematic decoupling. Firstly qⁱ₁, qⁱ₂, qⁱ₃, secondly, qⁱ₄, qⁱ₅, qⁱ₆

Introduction	VSA	Robotic features	Results	Conclusions
Kinematics	Validation			

Introduction	VSA	Robotic features	Results	Conclusions
The function	will be ava	ilble soon		

For researching purposes, we share our anthropomorphic feature extractor

Developed in Matlab language

angles = pos2ang(x,y,z)

Introduction	VSA	Robotic features	Results	Conclusions
Outline				

- 2) Virtual Skeletal Arm model
- 3 Robotic/Anthropomorphic Feature Extraction

4 Results

5 Conclusions

- Database: MCYT-100: 25 genuine, 25 forgeries, 100 users
- Train: first T enrolled signature
- Test:
 - FAR: remaining genuine signatures: $(25 T) \times 100$ scores
 - FRR: Random Forgery (RF): 1st testing genuine signature from the other users: $99 \times 100 = 9900$ scores
 - FRR: Skilled Forgery (SF): all available: $25 \times 100 = 2500$ scores
- **Features:** $\mathbf{Q}(q_k^i), \forall k \in 1, ... 6$ «-OUR CONTRIBUTION
- ASV: Dynamic Time Warping
- Performance: EER and DET curve

Pen-tip angles for orientating the CF $\{S_6\}$

Smoothed angles (θ_s^i, ϕ_s^i) , and the corresponding joint angles

Fixed angles (θ_f^i, ϕ_f^i) , and the corresponding joint angles

Performance results for different number of signatures to train

MCYT-100, only angle-based features and a DTW verifier

Comparison with on-line ASV, using five signatures to train and the MCYT-100. Performance in ERR (%).

Year	Method	RF	SF
2016	DTW+VQ [14]	-	1.55
2017	WP+BL DTW fusion [15]	-	2.76
2016	GMM+DTW [16]	-	3.05
2018	Angular Robotic Features + DTW	0.75	3.44
2017	$\Sigma\Lambda$ + DTW [3]	1.01	3.56
2014	Histogram+Manhattan [4]	1.15	4.02
2017	Symbolic Rep [17]	2.40	5.70

Introduction	VSA	Robotic features	Results	Conclusions
Outline				

- 2) Virtual Skeletal Arm model
- 3 Robotic/Anthropomorphic Feature Extraction

4 Results

- Framework to transform the on-line signature samples into a new feature space
- Mathematical basis for the designing Virtual Skeletal Arm (VSA) models
- Using robotic concepts to deduce the 3D movement from the pen-tip
- Features with physical meaning, simple, fast and with a verifiable solution
- Good results with angle-based features for on-line ASV

Introduction	VSA	Robotic features	Results	Conclusions
Future works				

- Combination of position-based and angle-based robotic/anthropomorphic features
- Use more signature database and verifiers
- Modeling the anatomy of the hand: the finger movement supported by the wrist can be also relevant
- Adapting robotic features for off-line ASV

Robotic Arm Motion for Verifying Signatures						
Introduction	VOA	hobolic leadles	nesuits	Conclusions		

Moises Diaz¹ Miguel A. Ferrer² Jose J. Quintana²

¹Universidad del Atlantico Medio, Spain ²Instituto para el Desarrollo Tecnológico y la Innovación en Comunicaciones Universidad de Las Palmas de Gran Canaria, Spain

16th ICFHR, Niagara Fall, August 8th, 2018

