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Background
 Offline handwritten Japanese text recognition:

 Big challenging problem.
 Receiving much attention from numerous business 

sectors.

 The existing systems are still far from perfection:
 Thousands of classes (4,438 classes) and various 

characters: Kana, Kanji, numerals and alphabet 
characters.

 Diversity of writing styles.
 Multiple-touches between characters.
 Noises...

 Handwritten Japanese text database, TUAT 
Kondate:
 13,685 text line images.
 Covers ~1200 categories characrers 
 Data is not enough. Handwritten Japanese text

Samples of Japanese characters
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Related Work(1/3)
 Segmentation based methods (*).

Pre-segment text lines into characters.

 Individually recognize each character
by MQDF or CNN.

Finally recognize text lines while
integrating linguistic and geometric
contexts.

They were dominant for Japanese.

 Problems:
 Pre-segmentation of text lines is quite 

costly.
 Early errors have domino-effect on the 

performance.

Pre-segmentation

Predict by CNN

寺 島 信 夫

Final recognize

寺島信夫
(*) K. C. Nguyen and M. Nakagawa 2016, Q.-F. Wang et al 2012, S. N. Srihari et al 2007.

信
言
計
...

イ言
1言
イ信

...

Error
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Related Work(2/3)
 Segmentation-free methods: avoiding segmentation errors.

 Traditional segmentation-free methods are HMM-based (*).

 Deep Neural Nets have proven superior to HMM.

 Based on Deep Neural Nets and CTC, many segmentation-free methods
have been proposed and proven to be very powerful.

 Graves et al. (2009) combined BLSTM and CTC to build a Connectionist System.

 R. Messina et al. (2015) combined MDLSTM-RNN and CTC to build an end-to-end
trainable model.

We propose an end-to-end model of Deep Convolutional Recurrent
Network (DCRN) for offline handwritten Japanese text recognition.

(*) Su et al., 2009, Suryani et al 2016.
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Related Work(3/3)
 Deep Neural Networks typically require a large set of data for training.

 Handwritten Japanese Text dataset, TUAT Kondate: data is not enough.

 apply data argumentation.

 Many data argumentation methods have been proposed by modifying the
original patterns:

 Affine transformations, nonlinear combinations...

 However, such methods just modify the original patterns, can’t gain the real
text line images.

 We propose a synthetic pattern generation method.
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Deep Convolutional Recurrent Network(1/3)
Deep Convolutional Recurrent Network
(DCRN) consists of three components.
 Convolutional Feature Extractor.

 Using a standard CNN network (FC and 
Softmax layers are removed).

 Extract a feature sequence from a text 
line image.

 Recurrent layers.
 Employing a Bidirectional LSTM.
 Predict pre-frames from a feature 

sequence.

 Transcription layer.
 Using CTC – decoder.
 Convert the pre-frame predictions into a

label sequence.
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Deep Convolutional Recurrent Network(2/3)
Previous works(*): overlapped
sliding windows DCRN model
Convolutional Feature Extractor.
 Pretrain CNN by isolated character

patterns.
 Using the pretrained CNN and

overlapped sliding windows to extract
a feature sequence.

(*) Nam-Tuan Ly et al. 2017

…

…

…

Feature 
sequence

h

CNN

1x

CNN

2x

CNN

3x

CNN

Tx
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Deep Convolutional Recurrent Network(2/3)
Previous works(*): overlapped
sliding windows DCRN model
Convolutional Feature Extractor.
 Pretrain CNN by isolated character

patterns.
 Using the pretrained CNN and

overlapped sliding windows to extract
a feature sequence.

 Two configurations:
 Remove just Softmax layer from CNN.
DCRN_o-s

 Remove both FC and Softmax layers from
CNN.
DCRN_o-f&s

Softmax - 3345

Full Connected - 400

Full Connected - 400

Image 96x96

Maxpool 2×2

Maxpool 2x2

Maxpool 2x2

Convolutional-64 5x5

Convolutional-64 3x3

Convolutional-32 3x3

Convolutional-32 5x5

Maxpool 2x2

Remove
(*) Nam-Tuan Ly et al. 2017



Nam-Tuan Ly et al.                                                     ICFHR 2018 at Niagara Falls, August 5-8, 2018
Copyright by Nakagawa lab. TUAT  12

Introduction Proposed method Experiments Conclusion

Deep Convolutional Recurrent Network(3/3)
This works: End-to-end Model
 Remove softmax and FC layers from CNN.
 Do not use sliding windows.
 Do not pretrain CNN.
 End-to-end training System.
 End-to-End

CNN
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Synthetic Data Generation(1/3)
Synthetic pattern generation method.
Sentences in corpora and handwritten character 

pattern database (HCP).

Local and global elastic distortion model.

 Following 6 steps:
1. Get a sentence (S) from a corpus.

2. Randomly choose a writer (A) from the HCP.

3. For each character of the sentence (S), a
handwritten image of this character is randomly
chosen from the writer (A).

4. Apply a local elastic distortion to each handwritten
character pattern in the step 3.

5. Synthesize a handwritten text line image from the
sentence (S) and handwritten character images in
the step 4 with random spacing.

6. Apply a global elastic distortion to the generated
synthetic text line image.

7時9分、自宅。

Local elastic distortion

Global elastic distortion

Corpora HCP
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Synthetic Data Generation(2/3)
Local Elastic Distortion
 Performs affine transformations on

each handwritten character image.
 Employs the shearing, rotation,

scaling, translation transformations.

Global Elastic Distortion
 Performs affine transformations on a

whole text line image.
 Employs the rotation and scaling

transformations.

Local elastic distortion

Global elastic distortion
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Synthetic Data Generation(3/3)
Synthetic Handwritten Text Line Dataset (SHTL)
 Handwritten Japanese character pattern DBs, Nakayosi and Kuchibue.

 Nikkei newspaper corpus (1.1 million sentences) and Asahi newspaper
corpus (1.14 million sentences).
 Randomly choose 30,000 sentences which contain less than 30 characters from each

corpus.
 make sure that the end-to-end model can be trainable by SHTL.

Samples of generated synthetic data.
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Datasets(1/2)
TUAT Kondate database
 A database of handwritten text patterns mixed with figures, tables, maps, 

diagrams and so on (originally online but converted to offline).
 About 13,685 of text line patterns (from 100 Japanese writers).

Information on Kondate database

Kondate sample patterns.

Kondate

Train set Valid set Test set

Number of writers 84 6 10

Number of samples 11,487 800 1,398
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Datasets(2/2)
Handwritten Japanese character pattern database.
 Nakayosi & Kuchibue (originally online but converted to offline)
 Used for generating SHTL.

Synthetic Handwritten Text Line Dataset (SHTL)
 60,000 text line images.
 used for training the end-to-end model.

Nakayosi Kuchibue

Writers 163 120

Classes 4438 3345

Samples 1,695,689 1,435,440
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Implementation Details
End-to-end DCRN

 Convolutional Feature Extractor: CNN network.
 4 cascades of 2 convolutional and pooling layers.
 Batch normalization, Leaky ReLu.

 Recurrent layers: Deep BLSTM.
 Three layers of 128 nodes each.
 Dropout (dropout rate = 0.8). 
 FC and Softmax layers.

 Training by 2 datasets:
 TUAT Kondate
 End-to-End

 TUAT Kondate + SHTL
 End-to-End_SHTL

Image 64x64

Conv-32

Conv-32 - Batch Norm 

Maxpool 2x2

Conv-64 

Conv-64 - Batch Norm

Maxpool 2x2

Conv-128 

Conv-128 - Batch Norm

Maxpool 2x2

Conv-256 

Conv-256 - Batch Norm

Maxpool 2x2



Nam-Tuan Ly et al.                                                     ICFHR 2018 at Niagara Falls, August 5-8, 2018
Copyright by Nakagawa lab. TUAT  20

Introduction Proposed method Experiments Conclusion

Evaluation Results

 Label Error Rate (LER)

 Sequence Error Rate (SER):

Where Z is the total number of target labels in S’

ED(p, q) is the edit distance between two sequences p and q. 

   
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Experiment Results
Label Error Rate (LER) and Sequence Error Rate (SER) on TUAT Kondate dataset. 

Model
Label Error Rate(%) Sequence Error Rate(%) 

Valid set Test set Valid set Test set

DCRN_o-f&s 11.74 6.95 39.33 28.04

DCRN_o-s 11.01 6.44 37.38 25.89

End-to-End 5.22 3.65 24.47 17.24

End-to-End_SHTL 3.62 1.95 21.87 14.02

 The end-to-end DCRN models substantially work better than the
overlapped sliding windows DCRN model.

 Recognition accuracy is improved by using the SHTL dataset for training
the end-to-end model.
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Experiment Results
Label Error Rate and Sequence Error Rate when combined with the language model.

 The DCRN models are superior to the segmentation based method.
 Recognition accuracy is further improved when the linguistic context is

integrated.

[1] K. C. Nguyen et al.

Model
Test set

LER(%) SER(%)

Segmensation based [1] 11.2 48.53

DCRN_o-f&s 6.68 26.97

DCRN_o-s 6.10 24.39

End-to-End 3.52 16.67

End-to-End_SHTL 1.87 13.81
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Correctly recognized samples

Correctly recognized samples by End-to-End_SHTL.  
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Misrecognized samples

Some mispredicted samples by End-to-End_SHTL. 
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Conclusion
 The end-to-end DCRN models substantially outperform the

overlapped sliding windows model and the segmentation-based
method.

 The synthetic pattern generation method improves the accuracy of
the end-to-end DCRN models.

 Recognition rate is further improved when combined with the
language model.
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Future Work
 Apply the DCRN model for offline handwritten multi-lines data.

 Apply the RNN language model and compare it with the tri-gram 
language model.

 Apply for the JIS level 2 characters (~7,000 categories).
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Thank you for your attention.


