Training an End-to-end Model for Offline Handwritten Japanese Text Recognition by Generated Synthetic Patterns

Nam-Tuan Ly, Cuong-Tuan Nguyen, Masaki Nakagawa

Tokyo University of Agriculture and Technology

Outline

Experiments

- 1. Introduction
- 2. Proposed method
- 3. Experiments
- 4. Conclusion & Future Work

Outline

- 1. Introduction
- 2. Proposed method
- 3. Experiments
- 4. Conclusion & Future Work

Background

- ☐ Offline handwritten Japanese text recognition:
 - ◆ Big challenging problem.
 - Receiving much attention from numerous business sectors.
- ☐ The existing systems are still far from perfection:
 - ◆ Thousands of classes (4,438 classes) and various characters: Kana, Kanji, numerals and alphabet characters.
 - Diversity of writing styles.
 - Multiple-touches between characters.
 - ◆ Noises...
- □ Handwritten Japanese text database, TUAT Kondate:
 - ◆ 13,685 text line images.
 - ◆ Covers ~1200 categories characrers
 - → Data is not enough.

Samples of Japanese characters

Handwritten Japanese text

Related Work(1/3)

- ☐ Segmentation based methods (*).
 - ◆ Pre-segment text lines into characters.
 - ◆ Individually recognize each character by MQDF or CNN.
 - ◆ Finally recognize text lines while integrating linguistic and geometric contexts.
 - ◆ They were dominant for Japanese.
 - → Problems:
 - ✓ Pre-segmentation of text lines is quite costly.
 - ✓ Early errors have domino-effect on the performance.

寺島信夫

(*) K. C. Nguyen and M. Nakagawa 2016, Q.-F. Wang et al 2012, S. N. Srihari et al 2007.

Related Work(2/3)

- Segmentation-free methods: avoiding segmentation errors.
 - ◆ Traditional segmentation-free methods are HMM-based (*).
 - → Deep Neural Nets have proven superior to HMM.
 - ◆ Based on Deep Neural Nets and CTC, many segmentation-free methods have been proposed and proven to be very powerful.
 - > Graves et al. (2009) combined BLSTM and CTC to build a Connectionist System.
 - > R. Messina et al. (2015) combined MDLSTM-RNN and CTC to build an end-to-end trainable model.

→We propose an end-to-end model of Deep Convolutional Recurrent Network (DCRN) for offline handwritten Japanese text recognition.

(*) Su et al., 2009, Suryani et al 2016.

- ☐ Deep Neural Networks typically require a large set of data for training.
 - ◆ Handwritten Japanese Text dataset, TUAT Kondate: data is not enough.
 - → apply data argumentation.
- Many data argumentation methods have been proposed by modifying the original patterns:
 - ◆ Affine transformations, nonlinear combinations...
 - → However, such methods just modify the original patterns, can't gain the real text line images.
- We propose a synthetic pattern generation method.

Outline

- 1. Introduction
- 2. Proposed method
- 3. Experiments
- 4. Conclusion & Future Work

Deep Convolutional Recurrent Network(1/3)

Deep Convolutional Recurrent Network (DCRN) consists of three components.

- □ Convolutional Feature Extractor.
 - Using a standard CNN network (FC and Softmax layers are removed).
 - ◆ Extract a feature sequence from a text line image.
- Recurrent layers.
 - Employing a Bidirectional LSTM.
 - ◆ Predict pre-frames from a feature sequence.
- Transcription layer.
 - ◆ Using CTC decoder.
 - ◆ Convert the pre-frame predictions into a label sequence.

Deep Convolutional Recurrent Network(2/3)

Experiments

Previous works(*): overlapped sliding windows DCRN model

Convolutional Feature Extractor.

- Pretrain CNN by isolated character patterns.
- Using the pretrained CNN and overlapped sliding windows to extract a feature sequence.

(*) Nam-Tuan Ly et al. 2017

Deep Convolutional Recurrent Network(2/3)

Experiments

Previous works(*): overlapped sliding windows DCRN model

Convolutional Feature Extractor.

- Pretrain CNN by isolated character patterns.
- Using the pretrained CNN and overlapped sliding windows to extract a feature sequence.
- Two configurations:
 - Remove just Softmax layer from CNN.
 - **→DCRN_o-s**
 - > Remove both FC and Softmax layers from CNN.
 - **→DCRN** o-f&s

Image 96x96

Convolutional-32 5x5

Maxpool 2x2

Convolutional-32 3x3

Maxpool 2x2

Convolutional-64 3x3

Maxpool 2x2

Convolutional-64 5x5

Maxpool 2×2

Full Connected - 400

Full Connected - 400

Softmax - 3345

Remove

(*) Nam-Tuan Ly et al. 2017

Deep Convolutional Recurrent Network(3/3)

This works: End-to-end Model

- Remove softmax and FC layers from CNN.
- Do not use sliding windows.
- Do not pretrain CNN.
- **End-to-end training System.**
- → End-to-End

Synthetic Data Generation(1/3)

Synthetic pattern generation method.

- ◆ Sentences in corpora and handwritten character pattern database (HCP).
- ◆ Local and global elastic distortion model.
- ☐ Following 6 steps:
 - 1. Get a sentence (S) from a corpus.
 - 2. Randomly choose a writer (A) from the HCP.
 - 3. For each character of the sentence (S), a handwritten image of this character is randomly chosen from the writer (A).
 - 4. Apply a local elastic distortion to each handwritten character pattern in the step 3.
 - 5. Synthesize a handwritten text line image from the sentence (S) and handwritten character images in the step 4 with random spacing.
 - 6. Apply a global elastic distortion to the generated synthetic text line image.

Global elastic distortion

Synthetic Data Generation(2/3)

Local Elastic Distortion

- ☐ Performs affine transformations on each handwritten character image.
- Employs the shearing, rotation, scaling, translation transformations.

Original

Right-Rotation

Left-Rotation

Scaling

X-Shear

Y-Shear

Local elastic distortion

Global Elastic Distortion

- ☐ Performs affine transformations on a whole text line image.
- Employs the rotation and scaling transformations.

Original

Rotation angle = -3°

Scaling factor = 0.9

Scaling factor = 0.9 and rotation angle = -3°

Global elastic distortion

Synthetic Data Generation(3/3)

Synthetic Handwritten Text Line Dataset (SHTL)

- ☐ Handwritten Japanese character pattern DBs, Nakayosi and Kuchibue.
- □ Nikkei newspaper corpus (1.1 million sentences) and Asahi newspaper corpus (1.14 million sentences).
 - ◆ Randomly choose 30,000 sentences which contain less than 30 characters from each corpus.
 - → make sure that the end-to-end model can be trainable by SHTL.

この日の先行取得の要請で、言十画が本格的にが動。

そのための予算に新年度は四億五十三百万円を監り込む方針。

毎回やの結果な学校のパソコンで処理して、校内の偏差値なける。

Samples of generated synthetic data.

- 1. Introduction
- 2. Proposed method
- 3. Experiments
- 4. Conclusion & Future Work

Datasets(1/2)

TUAT Kondate database

- □ A database of handwritten text patterns mixed with figures, tables, maps, diagrams and so on (originally online but converted to offline).
 - ◆ About 13,685 of text line patterns (from 100 Japanese writers).

Information on Kondate database

組入!)

新しい就職口の感想は?

Kondate sample patterns.

	Kondate		
	Train set	Valid set	Test set
Number of writers	84	6	10
Number of samples	11,487	800	1,398

Datasets(2/2)

Handwritten Japanese character pattern database.

- Nakayosi & Kuchibue (originally online but converted to offline)
 - Used for generating SHTL.

	Nakayosi	Kuchibue	
Writers	163	120	
Classes	4438	3345	
Samples	1,695,689	1,435,440	

Synthetic Handwritten Text Line Dataset (SHTL)

- \square 60,000 text line images.
- → used for training the end-to-end model.

Image 64x64

Implementation Details

End-to-end DCRN

- ☐ Convolutional Feature Extractor: CNN network.
 - ◆ 4 cascades of 2 convolutional and pooling layers.
 - Batch normalization, Leaky ReLu.
- ☐ Recurrent layers: Deep BLSTM.
 - ◆ Three layers of 128 nodes each.
 - lacktriangle Dropout (dropout rate = 0.8).
 - ◆ FC and Softmax layers.
- ☐ Training by 2 datasets:
 - **♦** TUAT Kondate
 - → End-to-End
 - ◆ TUAT Kondate + SHTL
 - → End-to-End_SHTL

Evaluation Results

☐ Label Error Rate (LER)

$$LER(h, S') = \frac{1}{Z} \sum_{(x,z) \in S'} ED(h(x), z)$$

☐ Sequence Error Rate (SER):

$$SER(h,S') = \frac{100}{|S'|} \sum_{(x,z) \in S'} \begin{cases} 0 & if \quad h(x) = z \\ 1 & otherwise \end{cases}$$

- ◆Where Z is the total number of target labels in S'
- igspace ED(p, q) is the edit distance between two sequences p and q.

Experiment Results

Label Error Rate (LER) and Sequence Error Rate (SER) on TUAT Kondate dataset.

Model	Label Error Rate(%)		Sequence Error Rate(%)	
	Valid set	Test set	Valid set	Test set
DCRN_o-f&s	11.74	6.95	39.33	28.04
DCRN_o-s	11.01	6.44	37.38	25.89
End-to-End	5.22	3.65	24.47	17.24
End-to-End_SHTL	3.62	1.95	21.87	14.02

- The end-to-end DCRN models substantially work better than the overlapped sliding windows DCRN model.
- ◆ Recognition accuracy is improved by using the SHTL dataset for training the end-to-end model.

Experiment Results

Label Error Rate and Sequence Error Rate when combined with the language model.

Model	Test set		
Model	LER(%)	SER(%)	
Segmensation based [1]	11.2	48.53	
DCRN_o-f&s	6.68	26.97	
DCRN_o-s	6.10	24.39	
End-to-End	3.52	16.67	
End-to-End_SHTL	1.87	13.81	

[1] K. C. Nguyen et al.

- The DCRN models are superior to the segmentation based method.
- Recognition accuracy is further improved when the linguistic context is integrated.

Correctly recognized samples

しばらくこのまま直進して、1日甲州街道にぶつかったら左折してくれ。

しばらくこのまま直進して、旧甲州街道にぶつかったら左折してくれ。

会携帯電話を買うと、その場で現金千円がキャッラュバック。

今、携帯電話を買うと、その場で現金千円がキャッシュバック。

拝啓 番脆の候貴社签マン"降昌のニととお喜び中(上け"ます

拝啓春暖の候貴社益々ご隆昌のこととお喜び申し上げます

〒532-0033大阪布淀川区新亭3月目9番14号

〒532-0033大阪市淀川区新高3丁目9番14号

Correctly recognized samples by End-to-End_SHTL.

Misrecognized samples

四1 バイグラムの確率有限オートマンによる表現

図1バイグラムの確率有限オートマンによる表現 -> 図1バイグラムの確率有限オートマンによる現

〒802-0003 福岡県北九州市小倉北区

〒802-0003福岡県北九州市小倉北区 -> 〒002-0003福岡県北九州市小倉北区

4/12個)14:00に成田第1ターミナル出DAにろ

4/12(月)14:00に成田第1ターミナル出口Aにて -> 4/12(月)14:00に成田第1ターミナル出口Aに?

自宅は府中市にあるので毎朝自転車通学です。

自宅は府中市にあるので毎朝自転車通学です。-> 自宅は府中市にあるので毎朝自東車画学です。

Some mispredicted samples by End-to-End_SHTL.

Outline

- 1. Introduction
- 2. Proposed method
- 3. Experiments
- 4. Conclusion & Future Work

Conclusion

- ☐ The end-to-end DCRN models substantially outperform the overlapped sliding windows model and the segmentation-based method.
- ☐ The synthetic pattern generation method improves the accuracy of the end-to-end DCRN models.
- □ Recognition rate is further improved when combined with the language model.

Future Work

☐ Apply the DCRN model for offline handwritten multi-lines data.

☐ Apply the RNN language model and compare it with the tri-gram language model.

 \square Apply for the JIS level 2 characters (\sim 7,000 categories).

Thank you for your attention.

