

A HIERARCHICAL CODEBOOK DESCRIPTOR APPROACH FOR ONLINE WRITER IDENTIFICATION

VIVEK VENUGOPAL, SURBHI PILLAI, SURESH SUNDARAM EEE DEPARTMENT, INDIAN INSTITUTE OF TECHNOLOGY, GUWAHATI

CONTRIBUTION

- Derive a codebook based descriptor which reduces the dimension while providing comparable results to [1, 2].
- Proposed descriptor has a dimension independent of the size of the feature vector.

CODEBOOK DESCRIPTOR

Proposed codebook descriptor

Given a hierarchical codebook $\{\{\mathbf{c}_{ij}\}_{j=1}^{K_2}\}_{i=1}^{K_1}$ and feature vectors $\{\mathbf{f}^j\}_{j=1}^{N_T}$ from a document having N_T points, each feature vector is assigned to the nearest codevector based on the minimum Euclidean distance criterion. Let $\{\mathbf{f}_{ij}^p\}_{p=1}^{n_{ij}}$ denote the feature vectors assigned to codevector \mathbf{c}_{ij} where $n_{ij} < N_T$ and $\sum_{i=1}^{K_1} \sum_{j=1}^{K_2} n_{ij} = N_T$.

$$S_{ij}^{p+}(d) = \begin{cases} \frac{1}{1+|f_{ij}^{p}(d)-c_{ij}(d)|} & f_{ij}^{p}(d) \ge c_{ij}(d) \\ 0 & otherwise \end{cases}$$

$$S_{ij}^{p-}(d) = \begin{cases} \frac{-1}{1+|f_{ij}^{p}(d)-c_{ij}(d)|} & f_{ij}^{p}(d) < c_{ij}(d) \\ 0 & otherwise \end{cases}$$

$$1 \leq p \leq n_{ij}$$
, $1 \leq d \leq D$

$$\tilde{S}_{ij}^{+}(d) = \frac{\sum_{p=1}^{n_{ij}} S_{ij}^{p+}(d)}{\sum_{i=1}^{K_1} \sum_{j=1}^{K_2} \sum_{p=1}^{n_{ij}} S_{ij}^{p+}(d)}$$

$$\tilde{S}_{ij}^{-}(d) = \frac{\sum_{p=1}^{n_{ij}} S_{ij}^{p-}(d)}{\sum_{i=1}^{K_1} \sum_{j=1}^{K_2} \sum_{p=1}^{n_{ij}} S_{ij}^{p-}(d)}$$

$$1 \le d \le D, 1 \le i \le K_1, 1 \le j \le K_2$$

$$\tilde{\mathbf{S}}_{ij}^{+} = [\tilde{S}_{ij}^{+}(1)....\tilde{S}_{ij}^{+}(d)....\tilde{S}_{ij}^{+}(D)]$$

$$\tilde{\mathbf{S}}_{ij}^{-} = [\tilde{S}_{ij}^{-}(1)....\tilde{S}_{ij}^{-}(d)....\tilde{S}_{ij}^{-}(D)]$$

$$\tilde{\mathbf{S}}_{ij} = [\parallel \tilde{\mathbf{S}}_{ij}^+ \parallel_2 \parallel \tilde{\mathbf{S}}_{ij}^- \parallel_2]^T$$

PROPOSED METHODOLOGY

Figure 1: Block diagram of proposed online writer identification system.

WEIGHTS FORMULATION

Weights formulation

- 1. Generation of histogram for each subcluster \mathbf{c}_{ij} .
- 2. Entropy computation for the generated histogram in (1).
- 3. Calculation of weights as a function of computed entropy.

 \mathbb{H}_{ij} be the histogram for the codevector \mathbf{c}_{ij} with R bins $\{v_{ij}^1, v_{ij}^2, v_{ij}^R\}$ where R is number of writers considered for codebook generation.

$$\tilde{h}_{ij}^r = \frac{v_{ij}^r}{n_{ij}^r}$$

$$h_{ij}^r = \frac{\tilde{h}_{ij}^r}{\sum_{r=1}^R \tilde{h}_{ij}^r}$$

$$H_{ij} = \sum_{r=1}^R -h_{ij}^r \log_2 h_{ij}^r$$

$$w_{ij} = \frac{1}{1 + H_{ij}}$$

Proposed writer descriptor

$$\mathbf{S}_{ij} = w_{ij} imes ilde{\mathbf{S}}_{ij}$$
 $[\mathbf{S}_{11} \quad \mathbf{S}_{12} \quad ... \quad \mathbf{S}_{ij} \quad ... \quad \mathbf{S}_{K_1K_2}]^T$

FEATURE EXTRACTION

- **Speed**(1):
- Writing Direction(2): The cosine and sine of the angle θ_i that the vector $\mathbf{p}_i \mathbf{p}_{i+r}$ makes with the horizontal.
- Curvature(2): cosine and the sine of the angle ϕ_i , defined between the vectors $\mathbf{p}_{i+r} \mathbf{p}_i$ and $\mathbf{p}_i \mathbf{p}_{i-r}$ respectively.
- Vicinity aspect(1): height to width ratio of the bounding box BB encompassing the points $\{\mathbf{p}_{i-r},...,\mathbf{p}_i,...,\mathbf{p}_{i+r}\}$.
- **Vicinity Curliness**(1): is the ratio of the trajectory length to the maximum amongst width and height of BB.

RESULTS

Table 1: Average identification rates with varying values of gap parameter.

_		Paragraph level		Textline level	
_	r	IR	(K_1, K_2)	IR	$\overline{(K_1,K_2)}$
_	1	98.61	(4, 40)	81.96	(5, 50)
	2	98.77	(4, 50)	86.03	(5, 55)
	3	98.85	(4, 50)	89.62	(5, 60)
	4	98.18	(4, 40)	88.37	(5, 60)
	5	98.02	(4, 40)	86.01	(5, 50)
_	6	97.77	(4, 50)	84.89	(5, 70)

Table 2: Survey of online writer identification system on IAM database.

Methodology	Paragraph Level	Textline Level
GMM based system [3]	98.56	88.96
Latent Dirichlet Allocation [4]	93.39	-
Subtractive Clustering + tf-idf scoring [5]	96.30	-
Sparse + tf-idf scoring [6]	98.94	83.3
K-means + Codebook descriptor [1]	97.81	80.61
Improved codebook descriptor [2]	98.82	89.92
Proposed descriptor	98.85	89.62

REFERENCES

- [1] Vivek Venugopal and Suresh Sundaram. An online writer identification system using regression-based feature normalization and codebook descriptors. *Expert Systems with Applications*, 72:196 206, 2017.
- 2] "Vivek Venugopal and Suresh Sundaram". An improved online writer identification framework using codebook descriptors. *Pattern Recognition*, 78:318 330, 2018.
- 3] Andreas Schlapbach, Marcus Liwicki, and Horst Bunke. A writer identification system for on-line whiteboard data. *Pattern Recogn.*, 41(7):2381–2397, July 2008.
- 4] A. Shivram, C. Ramaiah, and V. Govindaraju. A hierarchical bayesian approach to online writer identification. *IET Biometrics*, 2(4):191–198, December 2013.
- [5] G. Singh and S. Sundaram. A subtractive clustering scheme for text-independent online writer identification. In 2015 13th International Conference on Document Analysis and Recognition (ICDAR), pages 311–315, Aug 2015.
- [6] I. Dwivedi, S. Gupta, V. Venugopal, and S. Sundaram. Online writer identification using sparse coding and histogram based descriptors. In 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR), pages 572–577, Oct 2016.