

¹Sauradip Nag, ²Palaiahnakote Shivakumara, ³Wu Yirui, ⁴Umapada Pal, and ⁵Tong Lu ¹Kalyani Government Engineering College, Kalyani, Kolkata, India

²Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur, Malaysia ³College of Computer and Information, Hohai University, Nanjing, China

⁴Computer Vision and Pattern Recognition Unit, Indian Statistical Institute, Kolkata, India.

⁵National Key Lab for Novel Software Technology, Nanjing University, Nanjing, China.

Motivation

UNIVERSITY

OF MALAYA

- Identifying ethnicity or nationality is useful for several crime applications where people of different countries are involved.
- There are methods for nationality and person identification using biometric features. However, these methods suffer from inherent limitations especially when the images are expose to open environment.
- Therefore, this work can help to assist forensic investigation to enhance the performance.

Examples of English handwriting of different countries

Proposed Method

- This work propose to explores Cloud of Line Distribution (COLD) features for nationality identification using handwriting analysis.
- The proposed method uses tangent and mean intensity of edge pixels to segment the text line from the image and remove rule line.
- First, the proposed method finds dominant points on contour of the edge components using polygonal approximation.
- The distance between the dominant points are used for estimating polar coordinates, which gives COLD distribution in polar domain.
- The shape of the COLD distribution is used for nationality identification with the help of SVM classifier.

Framework of the proposed method

Preprocessing for Text Components Detection

Horizontal Projection Profiles and Tangent angle for the edge pixels are computed as follows.

COLD Distribution for Feature Extraction

Preprocessing step for feature extraction.

Polar coordinates are generated using distance between dominant points of the contours of edge components.

$$\theta = \tan^{-1} \left(\frac{y_{i+1} - y_i}{x_{i+1} - x_i} \right) \quad r = abs \left(\sqrt{(y_{i+1} - y_i)^2 + (x_{i+1} - x_i)^2} \right)$$

Here (x_i, y_i) and (x_{i+1}, y_{i+1}) denote the coordinates of a dominant pair. A line segment can be represented using θ and r as a point (θ, r) in polar domain

COLD distribution for handwriting components. (a) is a handwritten character, (b) is the Canny edge image of (a), (c) shows the dominant points for the contours, and (d) gives Cloud of Line Distribution (COLD) in polar coordinate.

Feature extraction for Nationality Identification

- The proposed method draw principal axis for the COLD distribution and calculate the distance from the pixels of principal axis to white pixels in the distribution.
- The absolute difference between reference pixel and pixel of distribution is computed and considered as features.

Feature extraction for handwriting text lines of five nations.

Experimental Results

• Each class contains 100 images so total 500 images are used for experimentation, which includes 90% images written by male and 10% are written by female.

Sample of the successful handwritten text line images of the proposed method for five ASIAN countries.

Confusion matrices of the proposed and exiting method (Maadeed et al.)

Classes	Bangladesh	India	China	Iran	Malaysia	Classes	Bangladesh	India	China	Iran	Malaysia
Bangladesh	79%	14%	0%	4%	3%	Bangladesh	41%	18%	10%	11%	20%
India	15%	73%	4%	6%	2%	India	21%	37%	15%	13%	14%
China	3%	7%	82%	3%	5%	China	12%	20%	38%	12%	18%
Iran	7%	13%	3%	66%	11%	Iran	19%	17%	9%	45%	10%
Malaysia	6%	10%	7%	2%	75%	Malaysia	17%	10%	23%	18%	32%
CR in (%)			75			CR in (%)			38.6		

Conclusion

- We have proposed a new method based on COLD distribution in polar domain for ethnicity or nationality identification using handwriting analysis.
- The principal axis is used for feature extraction and SVM classifier is used for classification
- Next, our plan is to identify persons of different provinces within country where multilingual is official language.