Writer Identification on Historical Documents Using Oriented Basic Image Features

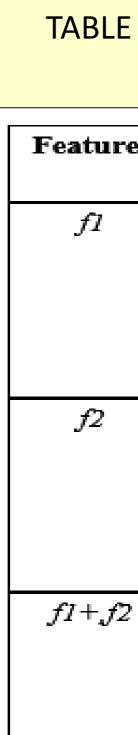
Abstract—This study addresses the problem of identifying the authorship of historical manuscripts, a challenging task that offers interesting applications for document examiners and paleographers. We exploit handwriting texture as the discriminative attribute characterizing the writer of a given document. The textural information in handwriting is captured using a number of distance metrics which are combined to arrive at a final decision. A comprehensive series of experiments is carried out using different configurations of the oBIFs and the realized classification rates are compared with the state-of-the-art techniques on this problem.

1. Overview

- The objective of our study is to find a combination of features that can achieve high classification rates on historical manuscripts.
- Features considered in our study include oriented Basic Image Feature (oBIF) columns .
- Leave-one-out experimental protocol.
- Experiments: Database employed in the ICDAR 2017 Historical Document.

2. Feature Extraction

oriented Basic Image Features (oBIFs):


- An extension to **the Basic Image Features (BIFs)**
- Represents an effective textural information descriptor
- Every location in the image is categorized into one of the seven local symmetry classes
- Classification is based on the response of a bank of six Derivative-of-Gaussian (DoG) filters (up to second order) of size determined by the scale parameter
- No orientation is assigned: If the location is attributed to the dark rotations, light rotational or the flat class
- n possible orientations can be assigned: the dark line on light, light line on dark and saddle-like classes
- 2n possible orientations can be assigned: for the slope class.
- Dimension of feature vector is 5n+3.
- Orientation quantization parameter n=4.
- ✤ A total of 23 entries in the oBIFs dictionary.
- We combine oBIFs at two different scales to produce the oBIF column features by ignoring the symmetry type flat. The oBIFs are generated using different values of the parameter ($\sigma \in \{1, 2, 4, 8, 16\}$) while the parameter ε is selected from a set of three small values of $\varepsilon \in \{0.1, 0.01, 0.001\}$.

3. Experimental Results

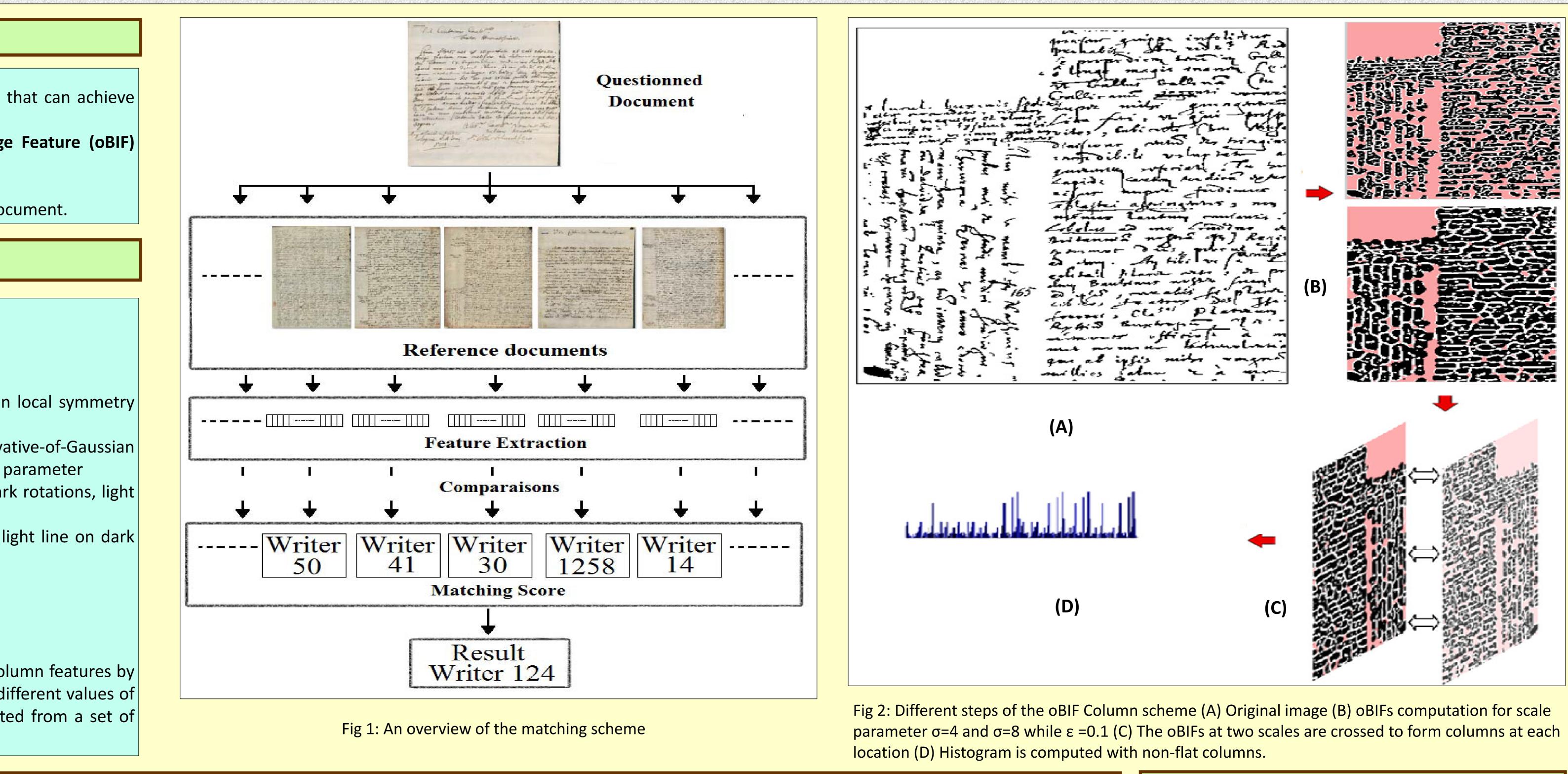

Dataset: ICDAR 2017 competition Dataset Size: 3600 document samples contributed by720different writers (5 documents per writer) **Performance Measure:** Top 1 Precision and the Mean Average Precision (mAP)

 TABLE I: CLASSIFICATION PERFORMANCE WITH DIFFERENT
CONFIGURATIONS OF OBIFS COLUMN FEATURES

Features	Parameters	Dim.	Classification Rate	
			Topl	mAP
fl	oBIFs column at $\sigma = 2$ and $\sigma = 4$; $\epsilon = 0.1$	484	73.42	52.19
f2	oBIFs column at $\sigma = 2$ and $\sigma = 8$; $\epsilon = 0.1$	484	72.36	51.11
	f1+,f2	968	75.53	54.14

Abdeljalil Gattal¹, Chawki Djeddi¹, Imran Siddiqi², Somaya Al-Maadeed³ ¹ Department of Mathematics and Computer Science, Larbi Tebessi University, Tebessa, Algeria. ² Bahria University Islamabad, Pakistan ³Department of Computer Science and Engineering, Qatar University, Qatar

TABLE II: CLASSIFICATION PERFORMANCE USING DIFFERENT DISTANCE METRICS

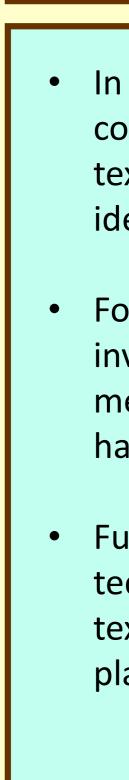

es	Distance metrics		Classification Rate	
			Topl	mAP
	Eu	Euclidean Distance	73.42	52.19
	CB	City-Block Distance	74.28	52.36
	Corr	Correlation Distance	74.75	53.42
	Cos	Cosine Distance	73.94	53.25
	Sp	Spearman Distance	73.89	52.87
-	Eu	Euclidean Distance	72.36	51.11
	CB	City-Block Distance	72.39	50.96
	Corr	Correlation Distance	73.11	52.71
	Cos	Cosine Distance	75.03	53.80
	Sp	Spearman Distance	72.19	51.68
2	Eu	Euclidean Distance	75.53	54.14
	CB	City-Block Distance	75.92	54.17
	Corr	Correlation Distance	75.86	55.42
	Cos	Cosine Distance	76.58	55.65
	Sp	Spearman Distance	75.42	54.72

TABLE III: CLASSIFICATION RATES FOR COMBINATION OF DIFFERENT METRICS

Combination schemes	Classification Rate		
	Topl	mAP	
Prod-Min(f1.Corr, f2.Cos)	77.39	56.82	
Prod-Min(fl.Cos, f2.Cos)	76.78	55.91	
Prod-Min(fl.Corr, f2.Corr)	76.17	55.70	
Prod-Min(fl.CB, f2.Cos)	76.31	55.24	
Prod-Min(flf2.Cos, f2.Cos)	75.92	55.10	
Prod-Min(flf2.Cos, fl.Corr)	76.89	56.29	
Prod-Min(flf2.Cos, flf2.Corr)	77.28	56.63	
Prod-Min(flf2.CB, flf2.Corr)	77.19	56.16	
Prod-Min(flf2.CB, flf2.Sp)	76.94	55.84	
Prod-Min(flf2.Eu, flf2.Sp)	76.89	55.94	
Prod-Min(flf2.CB, flf2.Cos)	76.56	55.44	
Prod-Min(flf2.Eu, flf2.Cos)	76.53	55.37	

TABLE IV: CLASSIFICATION RATES FOR COMBINATION OF DIFFERENT METRICS

Rank	Method	Classification Rate	
		Top-1	mAP
1	Proposed Method	77.39	56.82
2	Tébessa II	76.4	55.6
3	Groningen	76.1	54.2
4	Tébessa I	74.4	52.5
5	Hamburg	67.1	46.9
6	Barcelona	67.0	45.9
7	Fribourg	47.8	30.7

4. Conclusion

different employed configurations of oBIF columns to capture the textural information from handwriting for writer identification purposes.

• For future extensions of the work, we intend to investigate the applicability of other textural measures to characterize writer from handwriting.

• Furthermore, investigation of feature selection techniques to identify the most appropriate textural descriptors for this problem is also planned.