

Watermarking for Security Issue of Handwritten Documents with FCN

Cu Vinh Loc, Jean-Christophe Burie and Jean-Marc Ogier

L3i Laboratory, La Rochelle University, France

{vinh_loc.cu, jean-christophe.burie, jean-marc.ogier}@univ-lr.fr

INTRODUCTION

- ☐ Various handwritten documents are in use at notarized agreements, judicial documents, bank transfer forms, engineering drawing, etc.
- ☐ During document exchange over the digital channels, the handwritten documents are possibly intercepted and easily altered by malicious users.
- ☐ How to secure the handwritten documents by utilizing watermarking/ document examination (signature determination, handwriting identification, ink verification, etc.).

OBJECTIVE

- ☐ Detecting stable watermarking regions used to hide secret information for document security purpose.
- ☐ Resisting to various distortions including image processing operations, geometric transformation and print-and-scan process.
- ☐ Satisfying the essential requirements of capacity, robustness and imperceptibility.

METHOD

☐ Updating document content: gray level values with high intensity

Identifying rotation angle and scaling factor

☐ Transforming document into standard form

Blocks	Convolutional operations in each block
B1, B2	2 conv layers $(3\times3, 1\times1)$, ReLU, max pooling (2×2)
B3, B4	3 conv layers (3×3, 1×1), ReLU, max pooling (2×2)
B5	3 conv layers (1×1, 1×1), ReLU, max pooling (2×2)
B6	1 conv layer $(7 \times 7, 1 \times 1)$, ReLU, dropout
B7	2 conv layers $(1\times1, 1\times1)$, ReLU, dropout

In a world where the

Object's stroke and fill

Two sets of connected objects

Watermark hiding process

- Dividing each connected object into two sets P and Q
- Computing sum of values in P (s_1) and sum of values in Q (s_2)
- \square Making absolute difference (d_i) between s_1 and s_2

$$\begin{cases} s_1 = \sum_{k=1}^m p_k; s_2 = \sum_{k=1}^n q_k \\ d_i = |s_1 - s_2| \end{cases}$$

Watermark detection process

Robustness

Pre-processing

and standardization

Watermarking

region detection

 $\implies wm_i = \begin{cases} 0, & \text{if } s_1 \leq s_2 \\ 1, & \text{otherwise} \end{cases}$

Accuracy Ratio

	Distortions	Accuracy Ratio					
		Doc1	Doc2	Doc3	Doc4	Doc5	Doc6
	JPEG 40%	1	1	1	1	1	1
	JPEG 30%	0.88	0.82	0.85	0.83	0.79	0.86
	Rotation 5° (a)	1	1	1	1	1	1
	Rotation 7° (b)	1	1	1	1	1	1
	Rotation 9°	0.86	0.80	0.76	0.79	0.85	0.83
	Scaling 0.7	0.79	0.82	0.75	0.84	0.81	0.78
	Scaling 0.8 (c)	1	1	1	1	1	1
	Scaling 1.3 (d)	1	1	1	1	1	1
	Scaling 1.4 (e)	0.83	0.87	0.82	0.77	0.80	0.84
	(a) + (c)	1	1	1	1	1	1
	(a) + (d)	1	1	1	1	1	1
	(b) + (e)	0.69	0.71	0.74	0.67	0.64	0.72

JPEG compression + geometric distortion

Print-and-scan distortion

CONCLUSION

- Firstly proposing a watermarking approach for security issue of handwriting documents.
- Making use of the cutting-edge technique of FCN in detecting watermarking regions.
- Effectively applying for handwriting and general typewriting documents.
- Resisting to image processing operations and printing and scanning distortions.
- ☐ For future works, enhancing the robustness against complicated distortions such as print-photocopy-scan process and print-camera capture.

REFERENCES

- 1. Cu, V.L., Burie, J.C., Ogier, J.M.: Stable regions and object fill-based approach for document images watermarking. Document Analysis Systems, 2018.
- 2. K. Chetan and S. Nirmala: An efficient and secure robust watermarking scheme for document images using integer wavelets and block coding of binary watermarks. Trans. Info. Security and Appl, 2015.
- 3. K. A. M. Summuyya: Robust image watermarking technique using triangular regions and zernike moments for quantization based embedding. Multimed Tools Appl,
- 4. Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017.

