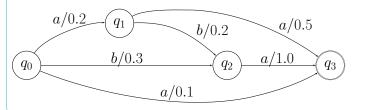


# Active Learning in Handwritten Text Recognition using the Derivational Entropy



**Verónica Romero, Joan Andreu Sánchez, Alejandro H. Toselli** Pattern Recognition and Human Language Technology Research Center, Universitat Politècnica de València, Camino Vera s/n, 46022, Valencia, Spain

### Introduction


- State-of-the-art HTR systems are based on statistical models.
- These models need large corpora for training, consisting in text line
- images with their corresponding transcripts.
- The manual annotation is expensive.

## Probabilistic Finite-State Automata and Word Graphs normalization

• A word graph (WG) is a labelled weighted directed acyclic graph:

$$\mathcal{G} = \langle Q, \Sigma, \delta, I, F, P \rangle$$

- During the decoding proces a WG is obtained for each text line image.
- A WG reperesents the transcriptions with higher probability of the given image.
- The obtained WG after the decoding process is not guaranteed to be proper nor consistent.
- In order to compute derivational entropy a WG has to be normalized.



### Derivational Entropy of an Acyclic PFA

**Definition 1.** The derivational entropy of a PFA A is defined as:

$$H(\mathcal{A}) = \sum_{\theta \in \Theta_{\mathcal{A}}(q_0, q_f, \cdot)} - p_{\mathcal{A}}(\theta) \log p_{\mathcal{A}}(\theta)$$

Considering an acyclic PFA with the states nominated in topological order, the derivational entropy can be efficiently computed as:

$$H(\mathcal{A}) = \sum_{(q,v,q')\in\delta} P(q,v,q') \log P(q,v,q') \sum_{i=0}^{|\mathcal{Q}|-2} \alpha_{\mathcal{A}}(i,q)$$

## **Experimental results**

- An initial model  $\phi$  is trained using a small set of annotated samples  $\mathcal{L}$ .
- The informativeness of each sample in a set of unannotated samples  $\ensuremath{\mathcal{U}}$  is
- measured by the derivational entropy.
  A set X<sup>\*</sup><sub>B</sub> ⊆ U of B unannotated samples are selected according to the result of the entropy and annotated by an expert.
- The set L is updated with the new annotated samples and they are removed from U.
- This iterative process continues until some stopping criterion.

#### System Setup

- The HTR system was based in HMMs and *n*-grams.
- The Word Error Rate is used to assess the quality of the transcription.

Results

|               | L     | U      | Test  | Total  |
|---------------|-------|--------|-------|--------|
| Lines         | 150   | 4,470  | 827   | 5,447  |
| Running words | 1,650 | 50,234 | 8,893 | 60,777 |
| Vocabulary    | 397   | 2,914  | 1,119 | 3,500  |

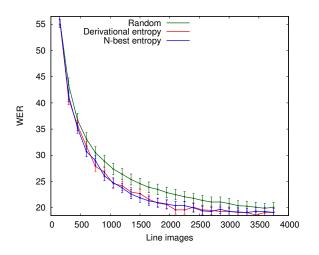
- Alternative: Active Learning techniques to selecting the most informative samples.
- The derivational entropy computed from word graphs cab be used for assessing how informative an unannotated trainin sequence is.
- To transform a WFA into a proper PFA, all transitions weights  $W(q, v, q') \in \delta$  must be multiplied by  $\mathcal{N}(q')/\mathcal{N}(q)$  with  $\mathcal{N}(q_f) = 1$ .
- The normalition vector  $\ensuremath{\mathcal{N}}$  is defined as:

$$\mathcal{N} = (I - M)^{-1} \nu$$

where

- final vector  $\nu$  is  $\nu(q) = \sum_{v \in \Sigma} W(q, v, q_f) \ \forall q \in Q \{q_f\}$
- the characteristic matrix M is  $M(q,q') = \sum_{v \in \Sigma} W(q,v,q')$ .
- $\mathcal{N}$  can be efficiently computed in an acyclic graph as:

$$\mathcal{I}(q) = \sum_{i=0}^{|Q|-2} \mathcal{W}_{\mathcal{A}}(\Theta_{\mathcal{A}}(q, q_f, i+1))$$


where  $\Theta_{\mathcal{A}}(q',q,l)$  is defined as the set of all paths starting in q', and ending in q of length l.

#### ESPOSALLES corpora

Λ

- Marriage license book from the 17th century
- Written by one writer in old Catalan
- Composed by 173 pages that contain 5,437 lines





• The batch size B was 150 lines

• The random experiment was repeated 10 times

#### Acknowledgements

Conclusions

- The efficient coputation of the derivational entropy in an acyclic WG has been presented.
- The derivational entropy can be used as confidence measure for AL with good results.
- An efficient WG normalization has been also introduced.

This work has been partially supported through the European Union's H2020 grant READ (Recognition and Enrichment of Archival Documents) (Ref: 674943) and the MINECO/FEDER, UE project TIN2015-70924-C2-1-R