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Hidden Markov model fields & variants 

› Automatic speech 
recognition 

› Gene sequence 
segmentation 

› Handwriting 
recognition 

› … 

› Pseudo-2D HMMs 
› Markov random fields 
› Explicit duration 

modelling 
› Nested HMMs 
› … 
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Hidden Markov model fields & variants 

› All these variants have in common that: 
› They are essentially HMMs at the core (i.e., have an 

initial state distribution 𝜋, a transition matrix 𝑨, and 
an observation probability distribution 𝑩) 

› They are usually trained using Baum-Welch 
 

› Widely used… 
But do we understand them sufficiently? 
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Goal: Investigate core aspects of HMMs 

› I. How can we test and benchmark our 
implementations? 

› II. How reliable is the Baum-Welch algorithm? Do we 
find the underlying Markov parameters? 

› III. What is the role of the transition matrix and how 
important is temporal modelling? 
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BENCHMARK 
I. 
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Benchmark 

› Initially a test for a fresh implementation 
› There is no real benchmark for HMM 

implementations available with a gradual scale of 
increasing difficulty 

› Real-world data sets exist (see for example Siddiqi, 
Gordon & Moore, 2007) but the underlying Markov 
parameters are unknown! 
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Benchmark idea: 

› Discrete observations (we inspect the temporal 
aspects of HMMs first). 

› Varying degrees of symbol lexicon overlap between 
classes: 
• 𝛿 = 0: 𝐿1 = 𝐿2 = {𝑎, 𝑏, 𝑐} 
• 𝛿 = 1: 𝐿1 = 𝑎, 𝑏, 𝑐 , 𝐿2 = 𝑏, 𝑐,𝑑  
• … 

› Compare several implementations (jpHMM, dHMM, 
GHMM and HTK) 

04-09-2014  | 7 



Benchmark experiments 

› Generate 100 classes for each difficulty (i.e., 
separability δ), randomly initialised Bakis models 
with 𝑁𝑠𝑠𝑠𝑠𝑠𝑠 = 10 states and 𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 20. 

› Sequence length was fixed at 𝑂 = 10 observations, 
300 sequences per class (i.e., 30 000 sequences in 
total) 

› Discrete, single dimension observations (same 
procedure can be applied to continuous observations 
with more dimensions). 
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Classification accuracy 

Separability 𝛿 jpHMM dHMM GHMM HTK 

0 1% 1% 1% 1% 

1 41% 40% 37% 41% 

2 66% 64% 61% 66% 

3 81% 78% 76% 80% 

5 95% 93% 92% 94% 

10 100% 100% 100% 100% 

20 100% 100% 100% 100% 
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Hard 

Easy 

No essential differences between implementations! 



Benchmark 

› Gauging the difficulty of any dataset 
› 95% performance accuracy? 

Implies that 5 tokens must be different between 
classes on a 20 token alphabet. 
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LEARNING THE TOPOLOGY 
OF A TRANSITION MATRIX 

II. 

04-09-2014  | 12 



Learning the topology of a transition matrix 

› How reliable is the Baum-Welch algorithm? 
› Figueiredo and Jain (2002) have already shown that 

EM algorithms can be brittle. 
› Will HMM detect an underlying Bakis topology? 
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General setup: 

› Generate data using a Bakis topology, so we know the 
exact Markov parameters. 

› Train models without restrictions (i.e., ergodic) 
› Align hidden state order by permuting all state 

orderings and selecting the one with smallest 𝜒2 
distance to original (B-W can create a state order that 
is not necessarily the same as the original) 

› Compare the transition matrices: 
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Target (Bakis) model Learned (ergodic) model 
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Target (Bakis) model Learned (ergodic) model 
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Unaligned model Aligned model 
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Learning the topology of a transition matrix 

› It is amazing that we don’t find (an approximation) of 
the Bakis topology, given the amount of effort we put 
into this. 

› How can the performance in applications of HMMs be 
attractive if we see that the real properties are not 
found? 
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THE IMPORTANCE OF 
TEMPORAL MODELLING 

III. 
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The importance of temporal modelling 

› What happens to performance if we remove the 
temporal aspect from an HMM? 

› Flat topology (“Orderless bag of states”): 𝑎𝑖𝑖 = 1
𝑁

 

› Compare Flat vs Bakis vs Ergodic 
› Handwritten cursive words; two features: 

• 𝐹𝐹𝑂3 (4900D, 130 classes, 31k instances, 3 states) 
• Sliding window, discretized using SOFM (625D, 20 

classes, 5k instances, 27 states) 
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What happens when we remove temporal 
modelling? 

› The temporal aspect is probably important 
› We expect the performance of a flat HMM to drop 

drastically compared to ergodic or Bakis models. 
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𝑭𝑭𝑶𝟑 
Topology Accuracy 

Flat 59.1% ± 0.8 

Bakis 59.9% ± 0.9 

Ergodic 59.5% ± 0.9 

 

04-09-2014  | 22 



𝑭𝑭𝑶𝟑 
Topology Accuracy 

Flat 59.1% ± 0.8 

Bakis 59.9% ± 0.9 

Ergodic 59.5% ± 0.9 

Sliding window 
Topology Accuracy 

Flat 71.1%±1.3 

Bakis 75.2%±2.0 

Ergodic 78.5%±1.2 
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The importance of temporal modelling 

› The performance drop is not so drastic as expected 
› The temporal aspect seems to be less important than 

the observation probabilities 
› Design of features is still important! 
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CONCLUSIONS 
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Conclusions 

› Why stress the temporal state modeling of HMMs 
when the hidden state sequence plays a relatively 
minor role? 

› Baum-Welch is brittle (also see Figueiredo and Jain 
(2002)) 

› “Bag of states” (including dynamic programming) and 
the Markov assumption are strong principles 

› There are many tricks of the trade, many of which 
badly documented in the literature (see also the 
appendix of the paper). 
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Invitation for discussion 

› The core principles such as the Markov assumption 
and dynamic programming seem to be working, but 
Baum-Welch seems to be brittle. 

› Is it a problem that ergodically trained systems do not 
find the underlying transition probabilities? 

› Is the “Bag of states” approach sufficient (for 
handwriting recognition purposes)? 
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Target (Bakis) model Learned (ergodic) model 
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Unaligned model Aligned model 
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