

A reevaluation and benchmark of hidden Markov Models

> Jean-Paul van Oosten

Prof. Lambert Schomaker

Hidden Markov model fields & variants

- > Automatic speech recognition
- Gene sequence segmentation
- Handwriting recognition

>

- > Pseudo-2D HMMs
- > Markov random fields
- Explicit duration modelling
- > Nested HMMs
- > ..

Hidden Markov model fields & variants

- > All these variants have in common that:
- > They are essentially HMMs at the core (i.e., have an initial state distribution π , a transition matrix A, and an observation probability distribution B)
- > They are usually trained using Baum-Welch
- > Widely used... But do we understand them sufficiently?

Goal: Investigate core aspects of HMMs

- > I. How can we test and benchmark our implementations?
- > II. How reliable is the Baum-Welch algorithm? Do we find the underlying Markov parameters?
- > III. What is the role of the transition matrix and how important is temporal modelling?

I. BENCHMARK

Benchmark

- > Initially a test for a fresh implementation
- There is no real benchmark for HMM implementations available with a gradual scale of increasing difficulty
- > Real-world data sets exist (see for example Siddiqi, Gordon & Moore, 2007) but the underlying Markov parameters are unknown!

04-09-2014

Benchmark idea:

- > Discrete observations (we inspect the temporal aspects of HMMs first).
- > Varying degrees of symbol lexicon overlap between classes:

•
$$\delta = 0: L_1 = L_2 = \{a, b, c\}$$

- $\delta = 1: L_1 = \{a, b, c\}, L_2 = \{b, c, d\}$
- •
- Compare several implementations (jpHMM, dHMM, GHMM and HTK)

Benchmark experiments

- > Generate 100 classes for each difficulty (i.e., separability δ), randomly initialised Bakis models with $N_{states} = 10$ states and $N_{symbols} = 20$.
- > Sequence length was fixed at $|\vec{O}| = 10$ observations, 300 sequences per class (i.e., 30 000 sequences in total)
- Discrete, single dimension observations (same procedure can be applied to continuous observations with more dimensions).

Classification accuracy

	Separability δ	jpHMM	dHMM	GHMM	HTK
Hard	0	1%	1%	1%	1%
	1	41%	40%	37%	41%
	2	66%	64%	61%	66%
	3	81%	78%	76%	80%
	5	95%	93%	92%	94%
	10	100%	100%	100%	100%
Easy	20	100%	100%	100%	100%

Classification accuracy

	Separability δ	jpHMM	dHMM	GHMM	HTK
Hard	0	1%	1%	1%	1%
	1	41%	40%	37%	41%
	2	66%	64%	61%	66%
	3	81%	78%	76%	80%
	5	95%	93%	92%	94%
	10	100%	100%	100%	100%
Easy	20	100%	100%	100%	100%

No essential differences between implementations!

Benchmark

- > Gauging the difficulty of any dataset
- > 95% performance accuracy? Implies that 5 tokens must be different between classes on a 20 token alphabet.

II. LEARNING THE TOPOLOGY OF A TRANSITION MATRIX

Learning the topology of a transition matrix

- > How reliable is the Baum-Welch algorithm?
- Figueiredo and Jain (2002) have already shown that EM algorithms can be brittle.
- > Will HMM detect an underlying Bakis topology?

General setup:

- Generate data using a Bakis topology, so we know the exact Markov parameters.
- > Train models without restrictions (i.e., ergodic)
- Align hidden state order by permuting all state orderings and selecting the one with smallest χ² distance to original (B-W can create a state order that is not necessarily the same as the original)
- > Compare the transition matrices:

Learning the topology of a transition matrix

- > It is amazing that we don't find (an approximation) of the Bakis topology, given the amount of effort we put into this.
- > How can the performance in applications of HMMs be attractive if we see that the real properties are not found?

III. THE IMPORTANCE OF TEMPORAL MODELLING

The importance of temporal modelling

- > What happens to performance if we remove the temporal aspect from an HMM?
- > Flat topology ("Orderless bag of states"): $a_{ij} = \frac{1}{N}$
- > Compare Flat vs Bakis vs Ergodic
- > Handwritten cursive words; two features:
 - FCO^3 (4900D, 130 classes, 31k instances, 3 states)
 - Sliding window, discretized using SOFM (625D, 20 classes, 5k instances, 27 states)

What happens when we remove temporal modelling?

- > The temporal aspect is probably important
- > We expect the performance of a flat HMM to drop drastically compared to ergodic or Bakis models.

FCO ³				
Topology	Accuracy			
Flat	$59.1\%\pm0.8$			
Bakis	$59.9\%\pm0.9$			
Ergodic	$59.5\%\pm0.9$			

FC	0 ³	Sliding window		
Topology	Accuracy	Topology	Accuracy	
Flat	$59.1\%\pm0.8$	Flat	$71.1\% \pm 1.3$	
Bakis	$59.9\%\pm0.9$	Bakis	$75.2\% \pm 2.0$	
Ergodic	$59.5\%\pm0.9$	Ergodic	$78.5\% \pm 1.2$	

The importance of temporal modelling

- > The performance drop is not so drastic as expected
- The temporal aspect seems to be less important than the observation probabilities
- > Design of features is still important!

CONCLUSIONS

Conclusions

- > Why stress the temporal state modeling of HMMs when the hidden state sequence plays a relatively minor role?
- Baum-Welch is brittle (also see Figueiredo and Jain (2002))
- "Bag of states" (including dynamic programming) and the Markov assumption are strong principles
- > There are many tricks of the trade, many of which badly documented in the literature (see also the appendix of the paper).

Invitation for discussion

- The core principles such as the Markov assumption and dynamic programming seem to be working, but Baum-Welch seems to be brittle.
- > Is it a problem that ergodically trained systems do not find the underlying transition probabilities?
- > Is the "Bag of states" approach sufficient (for handwriting recognition purposes)?

