

Tokyo University of Agriculture and Technology

Large Improvement in Line-direction-free and Character-orientation-free On-line Handwritten Japanese Text Recognition

Yuechan Hao, Bilan Zhu and Masaki Nakagawa Tokyo University of Agriculture and Technology, Japan haoyuechan@yahoo.co.jp,{zhubilan,nakagawa}@cc.tuat.ac.jp

Contents

Background

- Development of pen-based or touch-based systems: smart phone, tablet PC, electronic whiteboard, Anoto pen, e-pen and so on.
- Expansion of writing surface.
- Handwritten text recognition is being sought with less constraints and allowing people to write more freely.

Objective

Recognize on-line handwritten text free from line direction and character orientation constraints.

In Japan and China, people write text horizontally, vertically or even diagonally on a whiteboard and tablet.

Table top interfaces should allow people to write text without line direction and character orientation constraints.

Recognition rates of any line direction and character orientation should be as high as that of horizontal line and normal character orientation.

Line Direction and Charter Orientation Free Text

Step 1 Text line segmentation

Segment text lines composed of horizontal, vertical and slanted lines of text with arbitrary character orientation into text line elements.

Step 2 Orientation Estimation

Estimate and normalize character orientation and line direction.

Step 3 Over-segmentation

Decide segmentation points and non-segmentation points in quantized 4 directions using the two-stage classification scheme.

Step 4 Construction of candidate lattice

- Evaluate the likelihood of candidate segmentation paths.
- Step 5 Search and recognition
 - Optimal path can be found by the Viterbi search.

(1) Text line segmentation

- Block grouping
- Pre-segmentation
- Temporal segmentation
- Temporal merge
- Spatial merge

(2) Orientation estimation

- Character orientation
 - Downward and rightward
 - Two peaks
- Quantization of line direction
 - A text line element is quantized into 4 directions
 - rightward, leftward,
 - upward and downward

Fig.1 Examples of the segmentation result

(1) Text line segmentation

- Block grouping
- Pre-segmentation
- Temporal segmentation
- Temporal merge
- Spatial merge

(2) Orientation estimation

- Character orientation
 - Downward and rightward
 - Two peaks
- Quantization of line direction
 - A text line element is quantized into 4 directions
 - rightward, leftward
 - upward and downward

(1) Text line segmentation

- Block grouping
- Pre-segmentation
- Temporal segmentation
- Temporal merge
- Spatial merge

(2) Orientation estimation

- Character orientation
 - Downward and rightward
 - Two peaks
- Quantization of line direction
 - A text line element is quantized into 4 directions
 - rightward, leftward,
 - upward and downward

Fig.4 Quantization of line direction

(3) Over-segmentation

- Two-stage scheme
 - Hypothetical segmentation (HS)
 - SVM
 HP (hypothetical segmentation points)
 HS
 NCD
- (4) Candidate lattice construction

points)

NSP (Non-segmentation

- Each arc or node has a score
- (5) Recognition and search
 - character segmentation
 - linguistic context
 - character pattern structure
 - character recognition
 - Viterbi search into the candidate lattice

(3) Over-segmentation

- Two-stage scheme
 - Hypothetical segmentation
 - SVM

(4) Candidate lattice construction

Each arc or node has a score

(5) Recognition and search

- character segmentation
- linguistic context
- character pattern structure
- character recognition
- Viterbi search into the candidate lattice

Fig.6 Segmentation and candidate lattice

Recognition Model

Extract Features

To evaluate the score of string, we extract 6 types of features. $q_{i_1} = 0$

- Bounding box feature *b_i*.
- Inner gap feature q_i.
- Shape feature z_i.
- Unary position feature p^u_i.
- Binary position feature p^b_i
- Between-segment gap feature g_i

Fig.8 Some geometric features

Evaluation Function

$$f(\mathbf{X}, \mathbf{C}) = \sum_{i=1}^{n} \left\{ \begin{array}{l} \sum_{h=1}^{6} \left[\lambda_{h1} + \lambda_{h2} (k_i - 1) \right] \log P_h \\ \lambda_{71} \log P(g_{j_i} \mid SP) + \lambda_{72} \sum_{j=j_i+1}^{j_i+k_i-1} \log P(g_j \mid NSP) \end{array} \right\} + n\lambda$$

P_h, h=1,...,6, stand for $P(C_i|C_{i-2}C_{i-1})$, $P(b_i|C_i)$, $P(q_i|C_i)$, $P(z_i|C_i)$, $P(z_i|C_i)$, $P(p^u_i|C_i)$ and $P(p^b_i|C_{i-1}C_i)$, respectively.

• b_i , q_i , z_j , p^u_i , p^b_i : extracted features from the candidate patterns and between-candidate patterns compatibilities.

- The weighting parameters λ_{h1} , λ_{h2} (*h*=1~7) and λ are learnt using a genetic algorithm.
- The optimal path can be found by the Viterbi search.

Demonstration

Examples of Kondate-databse

暦の上に春は立ちながら 歳末何かとご夕端の折柄 蝉の声に更に暑さを覚え 昨日 結局 否決されたか" ^里完成_bw 内閣不信任業を 日本の政治 ぜんせん については わかり ません 一般都作"书 の献立 **お**兵徒ランチ オイライス 五目ごはん なまたまご 森裔店 by あ集子 すべて 当-ス 野菜 100 A 2014 9 00 円 1207 との他 550円 850円 (税込み、 アイス ラーメン 40A オペス 100 A PO8 その他

Examples of HANDS-Kondate_t_bf-2001-11.

Evaluation(1)

Compare the performance of the proposed method with our initial attempt in [1]. (whole page recognition rate test)

 Table 2 Improved aspects compared with the initial attempt.

	Initial Attempt in [1]	Method proposed here
Line segmentation	Off-strokes distance and Directional change	Text line grouping method
Over-segmentation	Overlap between the stroke	Two-stage segmentation
Recognition model	Not use the term related to the number of primitive segments	Insensitive to the number of segmented characters

[1]: Motoki Onuma, Akihito Kitadai, Bilan Zhu and Masaki Nakagawa: An On-line Handwritten Japanese Text Recognition System Free from Line Direction and Character Orientation Constraints, IEICE Trans. Inf&Syst., Vol.E88-D, No.8, pp.1823-1830, August 2005

Result

Table 3 Recognition rate on mixture of vertical,horizontal and skewed text lines.

Page No.	Character recognition rate			
	Initial attempt in [1]	Method proposed here		
4	90.90%	98.48%		
16	68.32%	93.60%		
18	60.51%	91.14%		
24	62.66%	87.89%		
27	62.10%	83.15%		

[1]: Motoki Onuma, Akihito Kitadai, Bilan Zhu and Masaki Nakagawa: An On-line Handwritten Japanese Text Recognition System Free from Line Direction and Character Orientation Constraints, IEICE Trans. Inf&Syst., Vol.E88-D, No.8, pp.1823-1830, August 2005

Evaluation(2)

- Compare the performance of the proposed method with our second attempt in [8]. (text lines with 4 directions' test)
 - Table 4 Improved aspects compared with the second attempt.

	Second attempt in [8]	Method proposed here
Over-segmentation	One-stage segmentation	Two-stage segmentation
Recognition model	Not use the term related to the number of primitive segments	Insensitive to the number of segmented characters

[8]:Zhu B. and Nakagawa M., Segmentation of on-line freely written Japanese text using SVM for improving text recognition, IEICE Trans. Inf. & Sys., E91-D(1), 105-113 (2008).

Result

Table 5 Results of the 4 directional testing setscompared with the second attempt.

Line Direction	Method				
	Second attempt in [8]		Method proposed here		
	f	Cr	f	Cr	
Rightward	0.9660	73.61%	0.9856	92.15%	
Leftward	0.9838	80.75%	0.9711	89.24%	
Downward	0.9897	80.23%	0.9872	90.78%	
Upward	0.9647	75.83%	0.9712	90.25%	

f: segmentation measure, Cr. character recognition rate.

[8]:Zhu B. and Nakagawa M., "Segmentation of on-line freely written Japanese text using SVM for improving text recognition," IEICE Trans. Inf. & Sys., E91-D(1), 105-113 (2008).

Conclusion

We presented significant improvement in line-direction-free and characterorientation-free on-line handwritten Japanese text recognition.

Recognition rate of vertical and skewed text is now almost comparable with horizontal text.

Recognition speed is quick enough for practical use.

Finish

Thank you for your attention.

Preparation

- Trained the character recognition engine and the four quadratic discriminant function (QDF) classifiers on $P(b_i|C_i)$, $P(q_i|C_i)$, $P(p^u_i|C_i)$ and $P(p^b_i|C_i)$ using the database: Nakayosi.
- Prepared the tri-gram table from the ASAHI newspaper and the NIKKEI newspaper.
- Applied the method to the database HANDS-Kondate_t_bf-2001-11collected from 100 persons which stores on-line text of various character orientations and line directions.
 - 75 persons' text lines for learning candidate segmentation point probability and the weighting parameters.
 - The remaining 25 persons' text lines for evaluating the performance.

Statistics of training/testing text lines

Table 1 Training and testing sets for each direction.

Cotogory	Line Direction							
Calegory	Rightward		Leftward		Downward		Upward	
Patterns	Training	Testing	Training	Testing	Training	Testing	Training	Testing
Text lines	10518	3623	130	36	6836	2032	72	17
English letters	4123	1868	6	0	2993	1231	4	0
Numerals	17147	5618	52	7	7782	2569	4	1
Kanas	40502	13927	573	178	31851	10352	262	45
Chinese	37495	12986	331	114	26680	8730	143	36
characters								
Other characters	11994	3614	67	10	7636	2258	27	6
Nsp	100743	107151	899	273	70106	23108	368	71
Nnsp	300753	34390	2874	1079	214508	72306	11235	260
Nac	11	11	8	9	11	12	6	5
Nal	1483.48	1520.52	13.72	12.36	1025.89	1005.6	5.87	3.52

Nsp is the number of true segmentation points, *Nnsp* is that of true non-segmentation points, *Nac* is the average number of characters in a text line and *Nal* is the average number of characters.

complementary

complementary

