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Linguistic resources for HTR B

Main issue of language modeling for HTR in case of Historical data:

< Data sparsity due to Nonstandardized language
» (Historical) spelling variation (= unknown word problem)
» Limited amount of relevant corpus material

Countermeasures:
< Develop normalization strategies using variation lexica

< Try to use a combination of in-domain and general corpora,
domain adaptation.



Combination of in-domain and out-of-domain resources m

Focus for this presentation:

» How to combine and use in-domain and out-of-domain resources to
Improve the performance of the HTR system

» One can concatenate the resources, however:

O indiscriminate use of out-of-domain data may not benefit, in fact even
deteriorate system

U the use of the complete out-domain data for training may increase the
complexity of the system, making the decoding process almost intractable

» \We consider the problem as a domain adaption problem for the HTR
system, to be approached by intelligent sample selection



General resource situation for Sample Selection ﬂ

BO

Collection

Bl

Collection

|Bol < |B4| < |E|, and the B, material is (much) more similar to the B,
material than the material from E. B, and B, may arise from a partition of a
corpus B.



Basic procedure

The basic procedure to combine resources is:
» Obtain relevant subset from the out-of-domain data
» Build for each resource a language model (LM).

» Next, interpolate the resulting LMs

» For example, for two models LM, and LM,,, The interpolated model LM,
Is defined by

Pa (Wlh)=A p; (wlh) +(1- A)p, (w]h)
Where the interpolation parameter A in [0, 1].



The main challenges m

 Ranking criteria for relevance of out-of-domain data

1 Selection procedure
» What: Sentences, documents, lines, ...
» How: ranking, stochastic sampling, ...?

d Combination scenario
» Use subset of out-of-domain and interpolate them

> Usc(e]I dlifferent subsets of out-of-domain and interpolate multiple
models

We propose an iterative method to select a set of informative
aesources Instead of just using the complete out-of-domain
ata.



Ranking criteria ﬁ

» Use the entropy difference [Moore e.a. 2010]:

Hin-domain(s) - Hout-of-domain(s)

» Issue: the perplexity/entropy cannot be a proper criterion when the number of
OOVs for each model differs
» In general: A model with a larger vocabulary which in practice may perform better

when deployed in the HTR system, can end up having worse perplexity than one
with a smaller vocabulary, estimated from a smaller training corpus



Ranking criteria: problems

Sentence from Hattem: OP DIE KINNEBACKE OFMEN SALT PLAESTEN

LM estimated from ~40 pages

LM estimated from ~300 pages

p(OP | <s>) =[2gram] 0.00158299 [ -2.80052 ]

p( OP | <s>)
= [2gram] 0.00592399 [ -2.22739 ]

p(DIE | OP ...) =[2gram] 0.0759172 [ -1.11966 ]

p(DIE [OP ...)
= [2gram] 0.109495 [ -0.960605 ]

p(<unk> | DIE ...) = [OOV] 0 [-inf]

p( <unk> | DIE ...)
= [OOV] 0 [ -inf]

p( <unk> | <unk>...) = [O0V]O0 [ -inf]

p( OFME | <unk> ...)
= [1gram] 3.51984e-05 [ -4.45348 ]

p( SALT | <unk>...) =[1gram] 0.000709825 [ -3.14885]

p( SALT | OFME ..) = [Lgram] 0.000305239 [ -3.51536 ]

p(PLAESTEN | SALT ...) = [Lgram] 0.00032598 [ -3.48681
]

p( PLAESTEN | SALT ...)
= [1gram] 8.90856e-05 [ -4.05019 ]

p( </s>| PLAESTEN ...) =[2gram] 0.0405917 [-1.39156 ]

p( </s>| PLAESTEN ...) =[2gram] 0.278732 [ -0.554813 ]

1 sentences, 6 words, 2 OOVs

1 sentences, 6 words, 1 OOVs

0 zeroprobs, logprob=-11.9474 pp|: 245.177 ppll=

970.176

0 zeroprobs, logprob= -15.7618 ppl: 423.616 ppll=

1420.26




Proposed methods for ranking ﬂ

We take into account the PPL and OOVs in our formulation:

» Additive criterion
(log PPL) + |[OOV//|V]

» Multiplicative criterion
(log PPL) * [OOV/|/|V]

» Average word probability, with p(unknown) set to O
(1/log PPL)*(1- [OOV|/|V])



Approaches to sample selection ﬂ

» In [Gao et. al. 2000], a text retrieval approach has been
proposed for domain adaptation problem. The main idea of
this approach is to avoid items specific to the out-of-domain
data by removing n-grams likely to be infrequent in new
documents, based on a partitioning of the training data.

» Moore and Lewis [Moore & Lewis 2010] have proposed a
cross-entropy based approach to sample randomly from the
out-of-domain data using perplexity as a main criterion.

» Gasco et.al. [Gasco et. al. 2012] address a data selection
approach from out-of-domain corpora by approximating the
probability of an in-domain corpus.



Our approach (1) m

» Inspired by Co-training
» Co-training gradually exploits informative unlabeled data and
assigns labels to them

» in Co-training two or more classifiers are trained from
iteratively growing training sets

» We fit our problem in this framework and propose two
iterative approaches.

» \We consider each language model, which has been trained
on an in-domain subcorpus, as a classifier and use it for
ranking the out-domain data.



Co-training Approach ﬂ
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Our approach (1)
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The Agree-Co Algorithm

Algorithm for domain adaptation Agree-Col(Bg, B1, E, max_iterations, threshold)
Initialize:

t=0, conf=0;
selecta resource scoring criterion C
Begin

While (< max_iterations && conf < threshold)
Begin

Build LMg and LM from Bg and B

For each E: in Edo

Begin

Compute Co{R:) and Cz(R:)
End

He := a high-confidence subset of E, selected by bestvalues w.r.t. Co
H: :=a high-confidence subset of E, selected by bestvaluesw.r.t. C:

Assign a value to conf by averaging the worst values of Coand C; on Hg resp. Hy

Se:= Ho M Hy
Bp =By U5
Bi:=B1U 5
E:=E\ S
t=t+1

End // while

Output: Selected Resources for domain adaptation and By and Bs.
End/ / Algorithm

Algorithm 4-1, pseudo-code of the Agree-Co Algorithm




Corpus Data (Bentham & ECCO) B

O The Bentham corpus of transcribed manuscripts (about 15.000 pages and 5M
words).

O The public part of the ECCO (Eighteenth Century Collections Online) corpus,
about 70M words.

With these two corpora, we make a two-level in-domain/out-of-domain distinction:

O The ECCO corpus is considered as an out-of-domain resource.

O Within the set of Bentham transcripts we distinguish: the set of “Batch 1" ground

truth transcriptions (~400 pages) as an in-domain resource and the rest as out-
of-domain.



Datasets

Resources Size Function
S ) . LM training,
entham In “Batch 1 57.7 (kb) HTR training
Bentham Out 38.3(mb) LM training
ECCO 425.8(mb) LM training
Test set 6.5 (kb) HTR testing




Data (Bentham)
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Experiments (1) m

We have applied the following scenarios for interpolation:

» Combining two Bentham resources (In and Out) and using a dictionary from the merged
data to train the LM (Merged-InOut-Dic-InOut).

» Interpolating Bentham In and Out domain resources using dictionary from In domain
data (Inter-InOut-Dic-In).

» Interpolating Bentham In and Out domain resources using dictionary from both In and
Out domain data (Inter-InOut-Dic-InOut).

» Combining two Bentham resources and interpolate the resulting LM with the LM of
ECCO using dictionary from the merged data to train the LM (Inter-In+OutECCO-Dic-
INOUtECCO).

» Interpolating Bentham In and Out domain resources with ECCO collection using
dictionary from Bentham In and Out domain data (Inter-InOutECCO-Dic-InOut).

» Interpolating Bentham In and Out domain resources with ECCO collection using
dictionary from all of them (Inter-InOutECCO-Dic-InOuteCCO).



Experiments(2) m

We have applied the following scenarios for sample selection
algorithm (AgreeCo):

% Single Iteration: we select the best 15% of the high confidence
resources using the proposed algorithms.

“* Multiple Iterations: we set the number of iterations to 20
iterations.



Results (1)

Method WER % WER without first CER % OO0V %
word %
Initial model using only 34.5 34.3 19.9 9.44
Batch 1 training set
Merged-InOut-Dic-InOut 34.01 - - -
Inter-InOut-Dic-In 33.40 - - -
Inter-InOut-Dic-InOut 30.02 24 .57 - -
Inter-In+OutECCO-Dic- 31.7 26 16.5 -
InOutECCO

Inter-InOUutECCO-Dic-InOut 30.7 25.3 15.9 -

Inter-InOutECCO-Dic- 28.31 22.74 14.7 54

INnOuteECCO




Results (2)

HTR results using Agree-Co, with the additive criterion as selection metric.

Method WER % WER without first word % CER %
Agree-Co-Single 27.47 22.06 14.4
Agree-Co-Inter-Two 30.44 24.57 16.1
Agree-Co-Inter-Three 27.13 21.68 14.2

HTR system using Agree-Co, with the multiplicative criterion as selection metric

Method WER % WER without first word % CER %
Agree-Co-Single 27.04 21.68 14.1
Agree-Co-Inter-Two 28.74 23.22 154
Agree-Co-Inter-Three 27.30 21.97 14.3




Results (3)

HTR system using Agree-Co, with average word probability as selection metric

Method WER % WER With(())}.lt first word CER %
0
Agree-Co-Single 28.02 23.12 14.9
Agree-Co-Inter-Two 29.51 23.99 -
Agree-Co-Inter-Three 27.72 22.35 14.6

r‘.
r



Results (4)
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Such are the methods that have occurred to

him for the accomplishing that identification of
interest with duty , the effectuating of which in the
person of the Governor , is declared to be one of the
leading objects of the Penitentiary Act .

The station of Jailor is not in common account

a very elevated one : the addition of Contractor has
not much tendency to raise it . He little dreamt ,
when he first launched into the subject , that he was
to become a suitor , and perhaps in vain , for such
an office . But inventions unpractised might be in
want of the inventory : and a situation , this clip-
-ped of emoluments while it was loaded with obliga-
-tions , might be in want of candidates . Penetrated
therefore with the importance of the end , he would
not suffer himself to see any thing unpleasant or
discreditable in the means .



Results (5) m
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Conclusions ﬂ

» We have studied and tested several ways in which task-specific
approaches to language modeling can improve handwritten text
recognition results.

» Approaches to the combination of in-domain and out-of domain
data have been shown to yield improvement in HTR
performance.

» The proposed sample selection algorithm for domain adaptation
outperforms the other general methods.



Future Work m

O Extend the work on sample selection for different datasets and
combine it with elaboration of the approach to text normalization.

L Use the topic-modeling approach in order to sample selection.

U Use a clustering based approach in order to find similar data points to
In-domain data and find an iterative way to combine more similar
clusters.



Thank you for your
attention!

Any Question?



tranScriptorium

TRANSCRIPTORIUM aims to develop

» Solutions for full transcription, indexing and search of historical handwritten

document images.

» Using modern, holistic Handwritten Text Recognition (HTR) technology.
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Handwritten text recognition m

Holistic, segmentation-free HTR technology employed here borrows
concepts and methods for the field of ASR based on HMMs and
N-Grams Language model.

In contrast with OCR, it does not need any kind of character or word
segmentation.
A. H. Toselli and et. al. Integrated Handwriting Recog- nition and Interpretation using Finite-State Models. Int.

Journal of Pattern Recognition and Artificial Intelligence, 18(4):519539, June 2004.

This HTR technology takes as input pre-processed text line images
(without segmenting them into words/characters), and as output
produces sequences of recognized words.

As a byproduct, the HTR process is able to produce a list of n-best
recognized hypotheses, which can be embedded into word graphs or
|attices.

The word graph is a fundamental tool not only in HTR, ASR and MT. In
this case, word graphs will be used for Interactive Techniques for HTR
(T5.3) and for Key Word Spotting (KWS) and indexing (T3.4).



Handwritten text recognition

Segmentation-free HTR Approach: Process Scheme:

Text Line Image
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> Preprocessing Module: performing

the handwriting style attribute
normalization.

Feature Extraction Module:
transforming each line image into a
sequence of feature vectors:

X = X{,Xo,...,Xn, Xj € RD.

Decoding Module: find a most likely
n-best word sequences,
{wy,...,Wp}, for a given handwritten
text line x, according to:

g .Wn} = Nn- best Pravm (X | W)- - Py Gram (W)

Set of n-best hypotheses can
conveniently arranged into a
so-called: Word-Graph.



Linguistic resources for HTR g

Two types of linguistic resource needed:

» Lexical models OL.O—.Q—.Q
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