ICFHR 2014, Crete Island, Greece, September 1-4, 2014

Open-lexicon Language Modeling Combining Word and Character Levels

M. Kozielski, M. Matysiak, P. Doetsch, R. Schlueter, H. Ney

Human Language Technology and Pattern Recognition
Computer Science Department
RWTH Aachen University
D-52056 Aachen, Germany

- use language model (LM) in Bayes decision rule (for ASR and OCR):
for observation sequence $x_{1}^{T}:=x_{1} \ldots x_{t} \ldots x_{T}$, find word sequence $w_{1}^{N}:=w_{1} \ldots w_{n} \ldots w_{N}$:

$$
x_{1}^{T} \rightarrow \hat{w}_{1}^{N}\left(x_{1}^{T}\right):=\underset{w_{1}^{N}}{\operatorname{argmax}}\left\{p\left(w_{1}^{N}\right) \cdot p\left(x_{1}^{T} \mid w_{1}^{N}\right)\right\}
$$

- perplexity PP: best measure of context constraints (theory and experience)
$=$ inverse of the geometric mean of LM prior $p\left(w_{1}^{N}\right)=$ 'effective vocabulary size'

$$
\log P P:=-1 / N \cdot \log p\left(w_{1}^{N}\right)=-1 / N \cdot \sum_{n=1}^{N} \log p\left(w_{n} \mid h_{n}\right)
$$

- problems:
- OOV words: out of vocabulary (=lexicon)
- more suitable units: characters rather than words
- how to build a good language model for an open lexicon?
approaches to OOV in recognition:
- Decompose words into characters [Bazzi 1999].
- Decompose words into sub-word units [Creutz 2007, Shaik 2011].
- Use mixed language models [Vertanen 2008, Rastrow 2009].
- Use filler models [Bazzi 2000, Hazen 2001].
- Combine of word- and character-level language models [Kozielski 2013].
this paper:
- there are well-established methods for closed-lexicon LMs
- question: How can be build an open-lexicon language model and preserve the closed-lexicon LM probabilities?

From Words to Characters

- interpret the word sequence as a character sequence:

$$
c_{1}^{M}:=c_{1} \ldots c_{m} \ldots c_{M}
$$

with a blank symbol to separate words

- advantages:
- no OOV problem anymore; every character sequence can be recognized!
- error rate should be measured at character level, too!
(problem with word level: long vs. short words!)
- perplexity at character level is always well defined and comparable!
- definition of character perplexity $P P_{c}$:

$$
\log P P_{c}:=-1 / M \cdot \log p\left(c_{1}^{M}\right)=-1 / M \cdot \sum_{m=1}^{M} \log p\left(c_{m} \mid h_{m}^{c}\right)
$$

- consider a closed lexicon:
what is the relation between word and character level?

Perplexity: From Words to Characters

- each word has a representation as a character sequence (+ blank!):

$$
w \rightarrow \hat{c}(w)=c_{1}^{J_{w}}(w)=c_{1}(w), \ldots, c_{j}(w), \ldots, c_{J_{w}}(w)
$$

- organize all words as a lexical prefix tree
- use a closed-lexicon LM $p(w \mid h)$ and push the probability mass $p(w \mid h)$ from leaves to root and compute the character-based $\mathrm{LM} p_{c}(\hat{c}(w) \mid h)$
- identity:

$$
p_{c}(\hat{c}(w) \mid h):=p(w \mid h)=\prod_{j=1}^{J_{w}} p_{c}\left(c_{j}(w) \mid c_{0}^{j-1}(w), h\right)
$$

- perplexities at word and character level:
for a word sequence w_{1}^{N} and character sequence c_{1}^{M} :

$$
\log P P=M / N \cdot \log P P_{c}
$$

- advantage of character level:
all types of LMs are now comparable!

Open Lexicon: From Words to Characters

- example of a simple alphabet:
a, b, \# (for 'blank')
- organize all character sequences as a lexical prefix tree
- associate a conditional distribution $p_{c}\left(c_{j} \mid c_{0}^{j-1}\right)$ with each interior node

starting point: a closed-lexicon LM $p(w \mid h)$ with lexicon V and unknown symbol (OOV) U :

$$
p(U \mid h):=\sum_{w \notin V} p(w \mid h) \quad 1-p(U \mid h)=\sum_{w \in V} p(w \mid h)
$$

principles for an open-lexicon LM:

- use an additional character-based language model (n-gram model) that allows ANY 'word' w with character sequence $\hat{c}(w)=c_{1}^{J}$:

$$
p(\hat{c}(w))=p\left(c_{1}^{J}\right)=\prod_{j=1}^{J} p\left(c_{j} \mid c_{0}^{j-1}\right)
$$

note: model includes in-lexicon words and is independent of history h

- for in-lexicon words w :
preserve the probabilities of closed-lexicon LM $p(w \mid h)$
- for out-of-vocabulary words $w=c_{1}^{J}$:
re-distribute the probability mass $p(U \mid h)$ using $p(\hat{c}(w))$

Open Lexicon: Combination of Word and Character Levels

- combination by backoff (V : closed lexicon):

$$
q(w \mid h)= \begin{cases}p(w \mid h) & \text { if } w \in V \\ p(U \mid h) \cdot p(\hat{c}(w)) & \text { if } w \notin V\end{cases}
$$

normalization: model is deficient!

- combination by sum:

$$
\begin{aligned}
q(w \mid h) & = \begin{cases}p(w \mid h)+p(U \mid h) \cdot p(\hat{c}(w)) & \text { if } w \in V \\
p(U \mid h) \cdot p(\hat{c}(w)) & \text { if } w \notin V\end{cases} \\
& =p(w \mid h) \cdot \delta(w \in V)+p(U \mid h) \cdot p(\hat{c}(w))
\end{aligned}
$$

normalization: model is correctly normalized, but changes closed-lexicon LM slightly!

- combination by maximum:

$$
q(w \mid h)=\max \{p(w \mid h) \cdot \delta(w \in V), p(U \mid h) \cdot p(\hat{c}(w))\}
$$

normalization: model is deficient!
ideal goals:

- preserve the closed-lexicon LM probabilities EXACTLY
- do not waste probability mass
methods so far: none of them satisfies
both constraints

method that satisfies BOTH constraints:
- represent closed lexicon and open lexicon JOINTLY in a tree
- when leaving the in-lexicon tree, compute the remaining probability mass and assign it to OOV character sequence
- two variants: without and with early subtraction

Combination by Interpolation

- starting points:
- closed-lexicon LM $p(w \mid h)$ WITHOUT unknown symbols !
- character-based LM with word probabilities $p(\hat{c}(w))$
- linear interpolation:

$$
q(w \mid h)=\lambda \cdot p(w \mid h)+(1-\lambda) \cdot p(\hat{c}(w))
$$

$\lambda \in[0,1]$: free parameter (optimized on dev data)

- properties:
- correct normalization
- closed-lexicon LM probabilities are not preserved!
- extension:
go across word boundaries in the character-based LM

corpus:

- 20 Mio running words: GALE and
newspapers (Addustour, Alahram, Albayan, Alittihad, Alwatan, Alraya)
- OOV on test data: 1.0% for a lexicon of ca. 200k words

type of language model	char PP			word PP
	in-lex	OOV	total	total
word-level only char-level only	$\begin{aligned} & 3.378 \\ & 3.680 \end{aligned}$	19.302	$3 . \overline{-}$	$14 \overline{-}$
combination by - back-off - maximum - sum - prefix tree no early subtraction with early subtraction	$\begin{aligned} & 3.394 \\ & 3.394 \\ & 3.387 \\ & 3.394 \\ & 3.394 \end{aligned}$		$\begin{aligned} & 3.438 \\ & 3.437 \\ & 3.431 \\ & \\ & 3.437 \\ & 3.438 \end{aligned}$	$\begin{aligned} & 927.5 \\ & 926.7 \\ & 917.6 \\ & 926.4 \\ & 927.6 \end{aligned}$
interpolation - not across word boundary - across word boundary	3.393	19.488 23.846	3.438 3.404	$\begin{aligned} & 928.1 \\ & 878.1 \end{aligned}$

Results on Arabic: Effect of Vocabulary Size

- closed lexicon: vary the vocabulary size explicitly
- measure the effect on perplexity

Results on English: Interpolation
improvements:
linear interpolation and across-word context in character-based LM

- main result: yes,
we can build an open-lexicon language model
and preserve the closed-lexicon LM probabilities!
- various methods:
- exact preservation
- approximate preservation: (small) improvements over closed-lexicon LM
- ongoing work:
- experiments on more challenging tasks, e.g. OOV larger than 1\%
- detailed analysis of the experimental results,
e. g. character-based LM across word boundaries?
- recognition experiments
- future: approach based on first principles:
- start from characters only
- learn larger units (e.g. words, syllables, ...) automatically

END

Closed Lexicon: Lexical Prefix Tree

Closed Lexicon: Lexical Prefix Tree

Open Lexicon: Lexical Prefix Tree

Qudero

Combination Using Lexical Prefix Tree

Lexical prefix tree model

Another way of achieving the normalization constraint is to represent the character-level model as an infinite lexical prefix tree and then exclude the in-lexicon words (paths).

Solid, black nodes and arcs demonstrate common prefixes for both in-lexicon and OOV words. Dashed, red nodes and arcs illustrate OOV words, outside of the common part of the tree. Once we traverse a red arc, it is impossible to arrive at a black arc again.

To exclude the in-lexicon words from this tree we have to drop every in-lexicon word-boundary arc and renormalize.

In the in-lexicon part of the lexical prefix tree the probability depends on the whole word history:

$$
\begin{equation*}
\bar{p}\left(c_{1}^{M}\right)=\prod_{j=1}^{M} \bar{p}\left(c_{j} \mid c_{1}^{j-1}\right) \tag{1}
\end{equation*}
$$

As soon as we go into the OOV part, the probability again depends only on the n-gram.

$$
\begin{equation*}
\forall c_{1}^{j-1}: \hat{w}\left(c_{1}^{j-1} \#\right) \notin V \quad \bar{p}\left(c_{j} \mid c_{1}^{j-1}\right)=p\left(c_{j} \mid c_{j-m+1}^{j-1}\right) \tag{2}
\end{equation*}
$$

