

ICFHR 2014, Crete Island, Greece, September 1-4, 2014

Open-lexicon Language Modeling Combining Word and Character Levels

M. Kozielski, M. Matysiak, P. Doetsch, R. Schlueter, H. Ney

Human Language Technology and Pattern Recognition
Computer Science Department
RWTH Aachen University
D-52056 Aachen, Germany

Motivation: Recognition in Context

• use language model (LM) in Bayes decision rule (for ASR and OCR): for observation sequence $x_1^T:=x_1...x_t...x_T$, find word sequence $w_1^N:=w_1...w_n...w_N$:

$$x_1^T o \hat{w}_1^N(x_1^T) \ := \ rgmax_{w_1^N} \{p(w_1^N) \cdot p(x_1^T|w_1^N)\}$$

• perplexity PP: best measure of context constraints (theory and experience) = inverse of the geometric mean of LM prior $p(w_1^N)$ = 'effective vocabulary size'

$$\log PP \ := \ -1/N \cdot \log p(w_1^N) = -1/N \cdot \sum_{n=1}^N \log p(w_n|h_n)$$

- problems:
 - OOV words: out of vocabulary (=lexicon)
 - more suitable units: characters rather than words
 - how to build a good language model for an open lexicon?

Related Work

approaches to OOV in recognition:

- Decompose words into characters [Bazzi 1999].
- Decompose words into sub-word units [Creutz 2007, Shaik 2011].
- Use mixed language models [Vertanen 2008, Rastrow 2009].
- Use filler models [Bazzi 2000, Hazen 2001].
- Combine of word- and character-level language models [Kozielski 2013].

this paper:

- there are well-established methods for closed-lexicon LMs
- question: How can be build an open-lexicon language model and preserve the closed-lexicon LM probabilities?

From Words to Characters

• interpret the word sequence as a character sequence:

$$c_1^M := c_1 ... c_m ... c_M$$

with a blank symbol to separate words

- advantages:
 - no OOV problem anymore; every character sequence can be recognized!
 - error rate should be measured at character level, too!(problem with word level: long vs. short words!)
 - perplexity at character level is always well defined and comparable!
- definition of character perplexity PP_c :

$$\log PP_c \, := \, -1/M \cdot \log p(c_1^M) = -1/M \cdot \sum_{m=1}^M \log p(c_m|h_m^c)$$

consider a closed lexicon:
 what is the relation between word and character level?

Perplexity: From Words to Characters

• each word has a representation as a character sequence (+ blank!):

$$w
ightarrow \hat{c}(w) = c_1^{J_w}(w) = c_1(w), ..., c_j(w), ..., c_{J_w}(w)$$

- organize all words as a lexical prefix tree
- ullet use a closed-lexicon LM p(w|h) and push the probability mass p(w|h) from leaves to root and compute the character-based LM $p_c(\hat{c}(w)|h)$

• identity:

$$p_c(\hat{c}(w)|h) := p(w|h) = \prod_{j=1}^{J_w} p_c(c_j(w)|c_0^{j-1}(w),h)$$

ullet perplexities at word and character level: for a word sequence w_1^N and character sequence c_1^M :

$$\log PP = M/N \cdot \log PP_c$$

advantage of character level: all types of LMs are now comparable!

Open Lexicon: From Words to Characters

- example of a simple alphabet:a, b, # (for 'blank')
- organize all character sequences as a lexical prefix tree
- ullet associate a conditional distribution $p_c(c_j|c_0^{j-1})$ with each interior node

Open Lexicon: From Words to Characters

starting point:

a closed-lexicon LM p(w|h) with lexicon V and unknown symbol (OOV) U:

$$p(U|h) \ := \ \sum_{w
otin V} p(w|h) \qquad \qquad 1 - p(U|h) = \sum_{w \in V} p(w|h)$$

principles for an open-lexicon LM:

• use an additional character-based language model (n-gram model) that allows ANY 'word' w with character sequence $\hat{c}(w) = c_1^J$:

$$p(\hat{c}(w)) = p(c_1^J) = \prod_{j=1}^J p(c_j|c_0^{j-1})$$

note: model includes in-lexicon words and is independent of history h

- ullet for in-lexicon words w: preserve the probabilities of closed-lexicon LM p(w|h)
- ullet for out-of-vocabulary words $w=c_1^J$: re-distribute the probability mass p(U|h) using $p(\hat{c}(w))$

Open Lexicon: Combination of Word and Character Levels

• combination by backoff (V: closed lexicon):

$$q(w|h) = egin{cases} p(w|h) & ext{if } w \in V \ p(U|h) \cdot p(\hat{c}(w)) & ext{if } w
otin V \end{cases}$$

normalization: model is deficient!

• combination by sum:

$$egin{aligned} q(w|h) &= egin{cases} p(w|h) + p(U|h) \cdot p(\hat{c}(w)) & ext{if } w \in V \ p(U|h) \cdot p(\hat{c}(w)) & ext{if } w
otin V \end{cases} \ &= p(w|h) \cdot \delta(w \in V) + p(U|h) \cdot p(\hat{c}(w)) \end{aligned}$$

normalization: model is correctly normalized, but changes closed-lexicon LM slightly!

combination by maximum:

$$q(w|h) = \max\{p(w|h) \cdot \delta(w \in V), \ p(U|h) \cdot p(\hat{c}(w))\}$$

normalization: model is deficient!

Combination Using Lexical Prefix Tree

ideal goals:

- preserve the closed-lexicon LM probabilities EXACTLY
- do not waste probability mass methods so far: none of them satisfies both constraints

method that satisfies BOTH constraints:

- represent closed lexicon and open lexicon JOINTLY in a tree
- when leaving the in-lexicon tree, compute the remaining probability mass and assign it to OOV character sequence
- two variants: without and with early subtraction

Combination by Interpolation

- starting points:
 - closed-lexicon LM p(w|h) WITHOUT unknown symbols!
 - character-based LM with word probabilities $p(\hat{c}(w))$
- linear interpolation:

$$q(w|h) = \lambda \cdot p(w|h) + (1 - \lambda) \cdot p(\hat{c}(w))$$

 $\lambda \in [0,1]$: free parameter (optimized on dev data)

- properties:
 - correct normalization
 - closed-lexicon LM probabilities are not preserved!
- extension:
 go across word boundaries in the character-based LM

Results: Arabic

corpus:

- 20 Mio running words: GALE and newspapers (Addustour, Alahram, Albayan, Alittihad, Alwatan, Alraya)
- OOV on test data: 1.0 % for a lexicon of ca. 200k words

type of	char PP			word PP
language model	in-lex	OOV	total	total
word-level only	3.378	_	_	_
char-level only	3.680	19.302	3.722	1438.9
combination by				
– back-off	3.394	18.860	3.438	927.5
– maximum	3.394	18.860	3.437	926.7
- sum	3.387	18.860	3.431	917.6
– prefix tree				
no early subtraction	3.394	18.569	3.437	926.4
with early subtraction	3.394	18.880	3.438	927.6
interpolation				
 not across word boundary 	3.393	19.488	3.438	928.1
 across word boundary 	3.349	23.846	3.404	878.1

Results on Arabic: Effect of Vocabulary Size

Quaero

- closed lexicon: vary the vocabulary size explicitly
- measure the effect on perplexity

Results on English: Interpolation

anaelo

improvements:

linear interpolation and across-word context in character-based LM

Conclusions

- main result: yes, we can build an open-lexicon language model and preserve the closed-lexicon LM probabilities!
- various methods:
 - exact preservation
 - approximate preservation: (small) improvements over closed-lexicon LM
- ongoing work:
 - experiments on more challenging tasks, e.g. OOV larger than 1%
 - detailed analysis of the experimental results,
 - e. g. character-based LM across word boundaries?
 - recognition experiments
- future: approach based on first principles:
 - start from characters only
 - learn larger units (e.g. words, syllables, ...) automatically

END

Closed Lexicon: Lexical Prefix Tree

Closed Lexicon: Lexical Prefix Tree

Open Lexicon: Lexical Prefix Tree

Combination Using Lexical Prefix Tree Lexical prefix tree model

Another way of achieving the normalization constraint is to represent the character-level model as an infinite lexical prefix tree and then exclude the in-lexicon words (paths).

Solid, black nodes and arcs demonstrate common prefixes for both in-lexicon and OOV words. Dashed, red nodes and arcs illustrate OOV words, outside of the common part of the tree. Once we traverse a red arc, it is impossible to arrive at a black arc again.

Lexical prefix tree model

To exclude the in-lexicon words from this tree we have to drop every in-lexicon word-boundary arc and renormalize.

In the in-lexicon part of the lexical prefix tree the probability depends on the whole word history:

$$ar{p}(c_1^M) = \prod_{j=1}^M ar{p}(c_j|c_1^{j-1})$$
 (1)

As soon as we go into the OOV part, the probability again depends only on the n-gram.

$$\forall c_1^{j-1} : \hat{w}(c_1^{j-1} \#) \notin V \quad \bar{p}(c_j | c_1^{j-1}) = p(c_j | c_{j-m+1}^{j-1}) \tag{2}$$

