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• Online Handwritten Tibetan Character Recognition 

– Wide applications: tablets, digital pens and mobile devices 

– Statistical approach: high accuracy but large storage, large 
training  sample needed 

– Structural approach: plausible to human perception but high 
computation 

• Component-Based Recognition 

– Take advantage of vertical structures（only one structure) 
• Components: simpler structures, fewer classes 
• Less  training samples needed 

Background 



• Previous Works of Structural Recognition 

– Stroke segmentation and graph matching 

• Stroke-order free but computationally demanding 

– Dynamic programming (DP), HMM 

• Stroke-order dependent 

– component-based sequential matching 

• Stroke-based: stroke segmentation and 
component segmentation remains difficult 

• HMM-based:  model-based component 
segmentation by level building, dependent on 
stroke and component order 



• Our Component-based Structural Approach 
– Statistical vector models for components 

– Over-segmentation of components  

– CRF-based integrated component segmentation-recognition 

 

 

– Remaining problem: component accuracy affects the whole 
Tibetan character recognition result 

– Proposed solution:  to learn features automatically for 
Tibetan components 

 L.-L. Ma, J. Wu, A Component-based On-line Handwritten Tibetan 

Character Recognition Method Using Conditional Random Field, Proc 

of 13th ICFHR ,Bari, Italy, 2012 



Tibetan Character Structures 

• Vertical combination of consonant and vowel 

– Consonant:  30 

– Vowel: 4 

• Vertical Structures 
– EC (essential consonant) 

– TV (the top vowel) 

– CaEc (the consonant above the EC) 

– CbEc (the consonant below the EC) 

– BV (the bottom vowel) 



Component-Based Recognition Framework 
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Component Representation Learning 

• Rationale 

– Automatic component  feature learning using DNN 
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• Semi-automatic component annotation 

– Optimizing segmentation  

    hypotheses strategy 

– Semi-supervised learning  

   idea 
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– joint distribution between observe vector v and hidden 
layers h  

 

–                  : for the visible units  

     conditioned on the hidden units of  

     RBM at level 

–                    : the joint distribution in  

     the top level RBM 

– Parameter optimization  

by contrastive divergence(CD) algorithm  

• Component Representation Learning  

– To use DBN to learn component structure 
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Whole Tibetan Character Recognition 

• CRF-based integration segmentation and 
recognition 

– Objective 

• to find the optimal segmentation S from C 

 

– Strategy 

• use CRF integrate multiple models to label the  
component segmentation points 

 



Experiments 

• MRG-OHTC  Database 

– 562 character classes  

– 150 samples per class, 120 for training, 30 for testing 

– Annotated  component dataset 

 

 

 

– Statistics of different component numbers 

 

 

 

Data #Class #Samples #Training #Test 

Tibetan character 562 84,300 67,440 16,860 

Tibetan component 120 173,250 138,600 34,650 

#component #character Percent (%) 

1 110 19.57 

2 311 55.34 

3 141 25.09 



Experiments 

• Feature Extraction for Component 

– Hand-crafted features 
• Local stroke direction histogram on moment based trajectory 

normalization 

• 8-direction, 512D 

– Automatic learning features 

• Classifier 

– Character/Component classification: MQDF, dimensionality 
reduction to 160D by FLDA 

 



Experimental results 

• Component recognition accuracy for different 
feature methods 

• DBN+pixel image        1024-600-400-160 network 

• DBN+ hand-crafted feature    512-600-400-160 network 

• Hand-crafted feature+LDA     512->160 

 

 

 

 

 

 

Feature method Component recognition 

accuracy (%) 

DBN+ pixel image 94.78 

DBN+ hand-crafted feature 89.05 

Hand-crafted feature+LDA 91.62 



• Whole Character Recognition 

 

 

 

 

 

Method #Class Accuracy 

(%) 

  

 Component 

-based 

CRF+DBN+pixel image   

  

     120 

94.09 

CRF+hand-crafted feature 92.67 

Normalized path evaluation    

+DBN+pixel image 

90.81 

Normalized path evaluation  

+hand-crafted feature 

    90.13 

Holistic character 562 89.12 



Conclusion 

• Proposed Work 

– Representation learning method for obtaining 
automatically Tibetan component features  

– Whole character recognition by integrating many 
models 

• Future Works 
– Aim: improve whole-character recognition accuracy 

– Discriminative learning of component models  

– Extension to Tibetan syllable recognition 
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