14th Int'l Conference on Frontiers of Handwriting Recognition, Crete island, Greece, 1-4 September 2014

A Tibetan Component Representation Learning Method for Online Handwritten Tibetan Character Recognition

Long-Long Ma, Jian Wu
Institute of Software, Chinese Academy of Science

Outline

- Background
- Tibetan Character Structures
- Component-Based Recognition Framework
- Tibetan Component Representation Learning
- Experimental Results
- Conclusion

Background

- Online Handwritten Tibetan Character Recognition
 - Wide applications: tablets, digital pens and mobile devices
 - Statistical approach: high accuracy but large storage, large training sample needed
 - Structural approach: plausible to human perception but high computation
- Component-Based Recognition
 - Take advantage of vertical structures (only one structure)
 - Components: simpler structures, fewer classes
 - Less training samples needed

- Previous Works of Structural Recognition
 - Stroke segmentation and graph matching
 - Stroke-order free but computationally demanding
 - Dynamic programming (DP), HMM
 - Stroke-order dependent

- component-based sequential matching
 - Stroke-based: stroke segmentation and component segmentation remains difficult
 - HMM-based: model-based component segmentation by level building, dependent on stroke and component order

Our Component-based Structural Approach

- Statistical vector models for components
- Over-segmentation of components
- CRF-based integrated component segmentation-recognition
 - ◆ L.-L. Ma, J. Wu, A Component-based On-line Handwritten Tibetan Character Recognition Method Using Conditional Random Field, *Proc of 13th ICFHR*, Bari, Italy, 2012
- Remaining problem: component accuracy affects the whole
 Tibetan character recognition result
- Proposed solution: to learn features automatically for Tibetan components

Tibetan Character Structures

- Vertical combination of consonant and vowel
 - Consonant: 30
 - Vowel: 4
- Vertical Structures
 - EC (essential consonant)
 - TV (the top vowel)
 - CaEc (the consonant above the EC)
 - CbEc (the consonant below the EC)
 - BV (the bottom vowel)

Component-Based Recognition Framework

Component Representation Learning

- Rationale
 - Automatic component feature learning using DNN

- Semi-automatic component annotation
 - Optimizing segmentation hypotheses strategy
 - Semi-supervised learning idea

Component Representation Learning

- To use DBN to learn component structure
- joint distribution between observe vector v and hidden layers h

$$P(v,h) = P(v,h^{1},h^{2},\cdots,h^{l}) = (\prod_{k=0}^{l-2} P(h^{k} \mid h^{k+1}))P(h^{l-1},h^{l})$$

- $P(h^{k-1}|h^k)$: for the visible units conditioned on the hidden units of RBM at level
- $P(h^{l-1}, h^l)$: the joint distribution in the top level RBM
- Parameter optimization
 by contrastive divergence(CD) algorithm

Whole Tibetan Character Recognition

- CRF-based integration segmentation and recognition
 - Objective
 - to find the optimal segmentation S from C

$$S^* = \underset{S}{\operatorname{arg max}} P(S \mid C)$$
 Sub-structure block sequence: $C = (c_1, c_2, \dots, c_n)$ Candidate segmentation sequence: $S = (s_1, s_2, \dots, s_m)$

- Strategy
 - use CRF integrate multiple models to label the component segmentation points

$$P(S \mid C, \lambda) = \frac{1}{Z(C)} \exp(\sum_{j} \lambda_{j} F_{j}(S, C))$$

Experiments

- MRG-OHTC Database
 - 562 character classes
 - 150 samples per class, 120 for training, 30 for testing
 - Annotated component dataset

Data	#Class	#Samples	#Training	#Test
Tibetan character	562	84,300	67,440	16,860
Tibetan component	120	173,250	138,600	34,650

Statistics of different component numbers

#component	#character	Percent (%)
1	110	19.57
2	311	55.34
3	141	25.09

Experiments

- Feature Extraction for Component
 - Hand-crafted features
 - Local stroke direction histogram on moment based trajectory normalization
 - 8-direction, 512D
 - Automatic learning features
- Classifier
 - Character/Component classification: MQDF, dimensionality reduction to 160D by FLDA

Experimental results

 Component recognition accuracy for different feature methods

```
• DBN+pixel image 1024-600-400-160 network
```

- DBN+ hand-crafted feature 512-600-400-160 network
- Hand-crafted feature+LDA 512->160

Feature method	Component recognition accuracy (%)
DBN+ pixel image	94.78
DBN+ hand-crafted feature	89.05
Hand-crafted feature+LDA	91.62

Whole Character Recognition

Method		#Class	Accuracy (%)
Component -based	CRF+DBN+pixel image		94.09
	CRF+hand-crafted feature		92.67
	Normalized path evaluation +DBN+pixel image	120	90.81
	Normalized path evaluation +hand-crafted feature		90.13
Holistic character		562	89.12

Conclusion

Proposed Work

- Representation learning method for obtaining automatically Tibetan component features
- Whole character recognition by integrating many models

Future Works

- Aim: improve whole-character recognition accuracy
- Discriminative learning of component models
- Extension to Tibetan syllable recognition

Thank you