Combining Local Features For Offline Writer Identification

Rajiv Jain and David Doermann

Language and Multimedia Processing Laboratory Department of Computer Science University of Maryland, College Park

INTRODUCTION

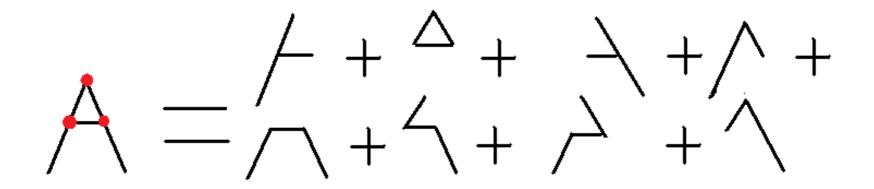
Writer Identification

- Retrieve all handwriting samples in a collection from a given author
- Assist Forensic Examiners / Historians with large collections
- Many strong local features recently proposed
 - Features desired that capture writer's variation
 - 7 different local features in ICDAR 2013 Writer ID contest

Hypothesis

 Combinations of complementary, strong features should provide state of the art performance

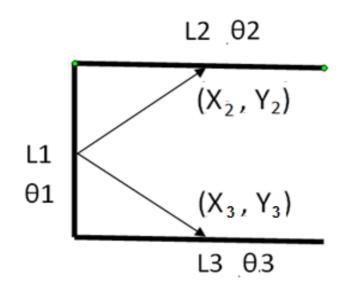
• We study 3 features


- Edge / Stroke K-Adjacent Segments
- KeyPoint SURF
- Allograph Features Contour Gradient Descriptor

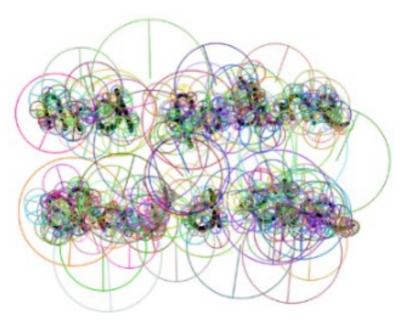
K-ADJACENT SEGMENTS (KAS)

Extract line segments from image contours

$$2nd \rightarrow 2md \rightarrow 2md$$


Take all K-adjacent line segments (K=3)

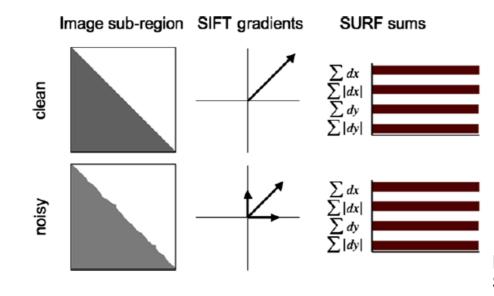
K-ADJACENT SEGMENTS (KAS)

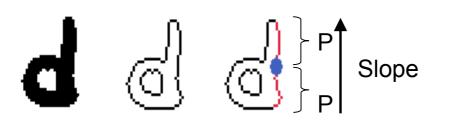

• Describe each line segment with a feature vector

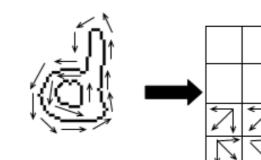
•
$$\frac{r^{\chi_2}}{N_d}, \frac{r^{\gamma_2}}{N_d}, \dots, \frac{r^{\chi_k}}{N_d}, \frac{r^{\gamma_k}}{N_d}, \frac{\theta_1}{.5*\pi}, \dots, \frac{\theta_k}{.5*\pi}, \frac{L_1}{N_d}, \dots, \frac{L_k}{N_d}$$

And fordune Show'd like

• SURF (64-D) slightly better than SIFT



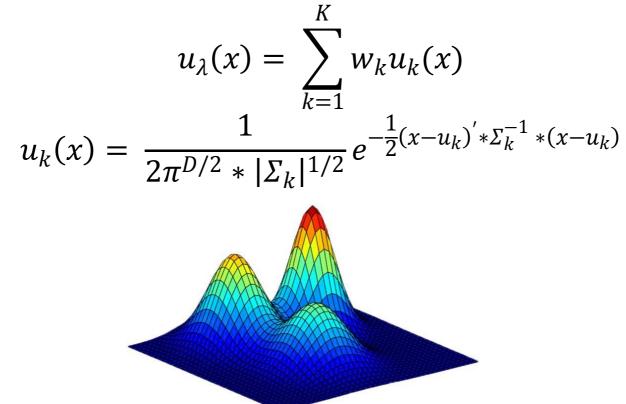

Image borrowed from Speeded up Robust Features, Bay et. al. 2008


CONTOUR GRADIENT DESCRIPTOR

Allograph Approach

• Segment Words in to character-like segments

- Describe characters by contour gradients
 - 4x4 grid with 8 orientation bins



FISHER VECTOR

• Popular feature aggregation technique

- Won 2011 ImageNet Challenge (Perronnin, 2011)
- Outperforms BOF for Writer ID using SIFT (Fiel, ICDAR 2013)

• Step 1: Create a Gaussian Mixture Model

FISHER VECTOR

• Step 2: Accumulate partial derivatives for u and σ

$$\gamma_t(k) = \frac{w_k u_k(x_t)}{\sum_{j=1}^K w_j u_j(x_t)}$$
$$G_{u,k}^X = \frac{1}{T\sqrt{w_k}} \sum_{t=1}^T \gamma_t(k) \left(\frac{x_t - u_k}{\sigma_k}\right)$$
$$G_{\sigma,k}^X = \frac{1}{T\sqrt{2 * w_k}} \sum_{t=1}^T \gamma_t(k) \left(\frac{(x_t - u_k)^2}{\sigma_k^2} - 1\right)$$

Step 3: L2 and Power Normalization
Final feature (super)vector is 2*K*D
Number of Gaussians = 64 in experiments

COMBINING FEATURES

• Cosine distance used for comparing Fisher Vectors • Distance between samples A and B with K features: $D(A, B, K) = \sum_{k=1}^{K} w_k * (FV_k(A) \cdot FV_k(B))$ Where,

$$1 = \sum_{k=1}^{K} w_k$$

• Grid search on training set used to select w_k • Baseline of setting $w_k = \frac{1}{3}$ for all three features

EXPERIMENTAL SETUP

Experimental Procedure

- 4 Datasets spanning 3 scripts (Roman, Arabic, Greek)
- Evaluated retrieval in a leave-one-out manner
- GMM and w_k (feature weight) training

Evaluation Measures

- Soft Top N At least one of Top N results by same writer
- Hard Top N All Top N results by same writer
- Mean Average Precision

IAM

IAM Dataset

- English
- 650 Writers 2 Samples

"Of course you must coult Evaporation of sodium

Features	Top-1	Тор-2	Top-5	Тор-10	MAP
K	88.8	91.1	95.0	96.4	0.914
S	90.0	92.4	96.2	97.6	0.926
С	91.3	93.8	96.6	97.6	0.936
K&S&C	94.1	96.0	98.2	98.5	0.958
K&S&C*	94.7	95.9	98.1	98.7	0.960
Chain Code	91	N/R	N/R	97%	N/R
Edge+ CO3	89	N/R	N/R	96%	N/R
SIFT+SOH	98.5	N/R	99.1	99.5	N/R

2013 ICDAR WRITER ID CONTEST

Greek

 250 Writers 	Features	Features		Top-2	Top-5	Top-10	MAP
	K		93.2	95.6	98.0	99.0	0.952
• Experiment A: 2 Greek Samples	S		94.6	97.2	98.8	99.2	0.964
 Experiment B: 2 English Samples 	С		97.2	98.6	99.2	99.6	0.984
	K&S&C		98.2	99.0	99.4	99.8	0.988
	K&S&C*		99.2	99.6	99.8	99.8	0.995
	SIFT+FV		88.4	92.0	96.8	97.8	n/a
	SIFT+SOH		93.8	96.4	97.2	97.8	n/a
	Edge+Run Ler	n	92.6	96.0	98.0	98.4	n/a
Zurparns Sibaske on n	English						
	Features	То	p-1 T	op-2 1	Гор-5	Top-10	MAP
Greek philosopher.	K	92	2.4 9	94.4	96.4	97.2	0.942
	S	94	4.6 9	96.2	97.6	98.0	0.959
	С	96	6.4 9	97.2	98.0	98.6	0.971
	K&S&C	9	7.0	97.8	98.0	98.6	0.976
	K&S&C*	97	7.4 9	97.8	98.6	98.8	0.979
	SIFT+FV	9	1.4 9	94.2	95.8	97.2	n/a
	SIFT+SOH	92	2.2 9	94.6	96.4	96.6	n/a
	Edge+Run Len	9 [.]	1.2 9	93.4	96.2	96.6	n/a

CVL DATASET

Soft Criterion

Features Top-1 Top-2 Top-5 | Top-10 Κ 98.5 99.1 99.2 99.5 S 98.7 99.2 99.4 99.5 С 97.0 98.1 99.0 99.4 K&S&C 99.4 99.5 99.5 99.7 K&S&C* 99.4 99.5 99.6 99.7 SIFT+FV 97.8 98.6 99.1 99.6 Edge + Run Len 97.6 97.9 98.5 98.3 **Grid MicroStruc** 99.1 97.7 98.3 99.0 Lines, Triangles, Squares, Hard Criterion

generally diff	ler
----------------	-----

309 Writers

4 English Samples

• 1 German Sample

-1								
Features	Top-2	Top-3	Top-4	MAP				
K	94.3	85.9	66.2	0.927				
S	96.1	88.5	70.7	0.941				
С	91.0	77.8	52.3	0.881				
K&S&C	98.3	95.2	80.8	0.966				
K&S&C*	98.3	94.8	82.9	0.969				
SIFT+FV	95.6	89.4	75.8	n/a				
Edge + Run Len	94.3	88.2	73.0	n/a				
Grid MicroStruc	95.3	94.5	73.0	n/a				
Edge + Run Len	94.3	88.2	73.0	n/a				

DARPA MADCAT

300 Arabic Writers

10 samples each

الماجين التوية الحير ا

ر دهذه المناسبة تدعو

Soft Criterion

Features	Тор-1	Тор-2	Top-5	Top-10
K	96.8	98.1	99.1	99.4
S	92.8	94.2	95.5	96.0
С	96.9	98.2	99.4	99.6
K&S&C	97.1	98.0	99.0	99.3
K&S&C*	97.8	98.6	99.4	99.5

Hard Criterion

Features	Top-2	Тор-3	Top-5	Top-7	Тор-9	MAP
K	93.3	90.5	82.2	68.4	39.7	86.4
S	87.1	82.1	69.5	51.8	17.0	72.2
С	93.2	90.1	80.9	67.6	40.1	86.8
K&S&C	94.2	91.4	86.6	76.3	43.3	87.9
K&S&C*	95.4	93.2	87.5	78.0	50.9	90.1

CONCLUSION

- Conclusions
 - No one feature is optimal on all datasets
 - Learning weights to combine 3 local features provides stateof-the-art results
- Future Work
 - Graduate
 - Add more features?
 - Dozen(s) of other local features
 - Better Feature Fusion
 - Is this the right answer?
 - Feature Learning
 - Larger datasets are needed

QUESTIONS?