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INTRODUCTION

 Writer Identification
 Retrieve all handwriting samples in a collection from a given author

 Assist Forensic Examiners / Historians with large collections

 Many strong local features recently proposed
 Features desired that capture writer’s variation

 7 different local features in ICDAR 2013 Writer ID contest

 Hypothesis
 Combinations of complementary, strong features should provide 

state of the art performance

 We study 3 features
 Edge / Stroke - K-Adjacent Segments

 KeyPoint - SURF

 Allograph Features – Contour Gradient Descriptor



K-ADJACENT SEGMENTS (KAS)

 Extract line segments from image contours

 Take all K-adjacent line segments (K=3)
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K-ADJACENT SEGMENTS (KAS)

 Describe each line segment with a feature vector
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SURF

 SURF (64-D) slightly better than SIFT
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Image borrowed from  
Speeded up Robust Features, 
Bay et. al. 2008



CONTOUR GRADIENT DESCRIPTOR
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Slope

 Allograph Approach

 Segment Words in to character-like segments 

 Describe characters by contour gradients

 4x4 grid with 8 orientation bins



FISHER VECTOR

 Popular feature aggregation technique

 Won 2011 ImageNet Challenge (Perronnin, 2011)

 Outperforms BOF for Writer ID using SIFT (Fiel, ICDAR 2013)

 Step 1: Create a Gaussian Mixture Model
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FISHER VECTOR

 Step 2: Accumulate partial derivatives for 𝑢 and σ
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 Step 3: L2 and Power Normalization 

 Final feature (super)vector is 2*K*D

 Number of Gaussians = 64 in experiments
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COMBINING FEATURES

 Cosine distance used for comparing Fisher Vectors

 Distance between samples A and B with K features:

𝐷 𝐴, 𝐵, 𝐾 =  

𝑘=1

𝐾

𝑤𝑘 ∗ 𝐹𝑉𝑘 𝐴 • 𝐹𝑉𝑘 𝐵

Where,

1 =  

𝑘=1

𝐾

𝑤𝑘

 Grid search on training set used to select 𝑤𝑘

 Baseline of setting 𝑤𝑘 =
1

3
for all three features
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EXPERIMENTAL SETUP

 Experimental Procedure

 4 Datasets spanning 3 scripts ( Roman, Arabic, Greek)

 Evaluated retrieval in a leave-one-out manner

 GMM and 𝑤𝑘 (feature weight) training 

 Evaluation Measures

 Soft Top N – At least one of Top N results by same writer

 Hard Top N – All Top N results by same writer 

 Mean Average Precision
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IAM

Features Top-1 Top-2 Top-5 Top-10 MAP

K 88.8 91.1 95.0 96.4 0.914

S 90.0 92.4 96.2 97.6 0.926

C 91.3 93.8 96.6 97.6 0.936

K&S&C 94.1 96.0 98.2 98.5 0.958

K&S&C* 94.7 95.9 98.1 98.7 0.960

Chain Code 91 N/R N/R 97% N/R

Edge+ CO3 89 N/R N/R 96% N/R

SIFT+SOH 98.5 N/R 99.1 99.5 N/R

IAM Dataset
◦ English

◦ 650 Writers – 2 Samples
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2013 ICDAR WRITER ID CONTEST

◦ 250 Writers
◦ Experiment A: 2 Greek Samples

◦ Experiment B: 2 English Samples
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Features Top-1 Top-2 Top-5 Top-10 MAP
K 92.4 94.4 96.4 97.2 0.942

S 94.6 96.2 97.6 98.0 0.959

C 96.4 97.2 98.0 98.6 0.971

K&S&C 97.0 97.8 98.0 98.6 0.976

K&S&C* 97.4 97.8 98.6 98.8 0.979
SIFT+FV 91.4 94.2 95.8 97.2 n/a

SIFT+SOH 92.2 94.6 96.4 96.6 n/a

Edge+Run Len 91.2 93.4 96.2 96.6 n/a

Features Top-1 Top-2 Top-5 Top-10 MAP
K 93.2 95.6 98.0 99.0 0.952

S 94.6 97.2 98.8 99.2 0.964

C 97.2 98.6 99.2 99.6 0.984

K&S&C 98.2 99.0 99.4 99.8 0.988

K&S&C* 99.2 99.6 99.8 99.8 0.995
SIFT+FV 88.4 92.0 96.8 97.8 n/a

SIFT+SOH 93.8 96.4 97.2 97.8 n/a

Edge+Run Len 92.6 96.0 98.0 98.4 n/a

Greek

English



CVL DATASET

◦ 309 Writers
◦ 4 English Samples

◦ 1 German Sample
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Features Top-1 Top-2 Top-5 Top-10
K 98.5 99.1 99.2 99.5

S 98.7 99.2 99.4 99.5

C 97.0 98.1 99.0 99.4

K&S&C 99.4 99.5 99.5 99.7

K&S&C* 99.4 99.5 99.6 99.7
SIFT+FV 97.8 98.6 99.1 99.6

Edge + Run Len 97.6 97.9 98.3 98.5

Grid MicroStruc 97.7 98.3 99.0 99.1

Features Top-2 Top-3 Top-4 MAP

K 94.3 85.9 66.2 0.927

S 96.1 88.5 70.7 0.941

C 91.0 77.8 52.3 0.881

K&S&C 98.3 95.2 80.8 0.966

K&S&C* 98.3 94.8 82.9 0.969
SIFT+FV 95.6 89.4 75.8 n/a

Edge + Run Len 94.3 88.2 73.0 n/a

Grid MicroStruc 95.3 94.5 73.0 n/a

Soft Criterion

Hard Criterion



DARPA MADCAT

◦ 300 Arabic Writers

◦ 10 samples each
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Features Top-1 Top-2 Top-5 Top-10

K 96.8 98.1 99.1 99.4

S 92.8 94.2 95.5 96.0

C 96.9 98.2 99.4 99.6

K&S&C 97.1 98.0 99.0 99.3

K&S&C* 97.8 98.6 99.4 99.5

Features Top-2 Top-3 Top-5 Top-7 Top-9 MAP

K 93.3 90.5 82.2 68.4 39.7 86.4

S 87.1 82.1 69.5 51.8 17.0 72.2

C 93.2 90.1 80.9 67.6 40.1 86.8

K&S&C 94.2 91.4 86.6 76.3 43.3 87.9

K&S&C* 95.4 93.2 87.5 78.0 50.9 90.1

Soft Criterion

Hard Criterion



CONCLUSION
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 Conclusions

 No one feature is optimal on all datasets

 Learning weights to combine 3 local features provides state-

of-the-art results

 Future Work

 Graduate

 Add more features?

 Dozen(s) of other local features

 Better Feature Fusion

 Is this the right answer?

 Feature Learning

 Larger datasets are needed



QUESTIONS?
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