

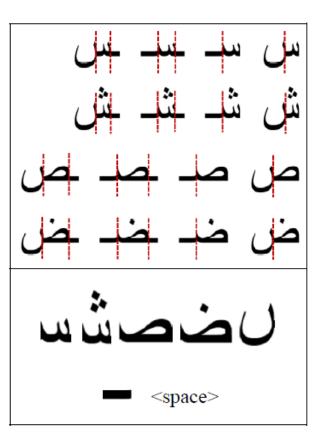
Improvements in Sub-Character HMM Model Based Arabic Text Recognition

Irfan Ahmad, <u>Gernot A. Fink</u>, and Sabri A. Mahmoud

14th International Conference on Frontiers in Handwriting Recognition (ICFHR-2014), Crete, Greece, September 1-4, 2014.

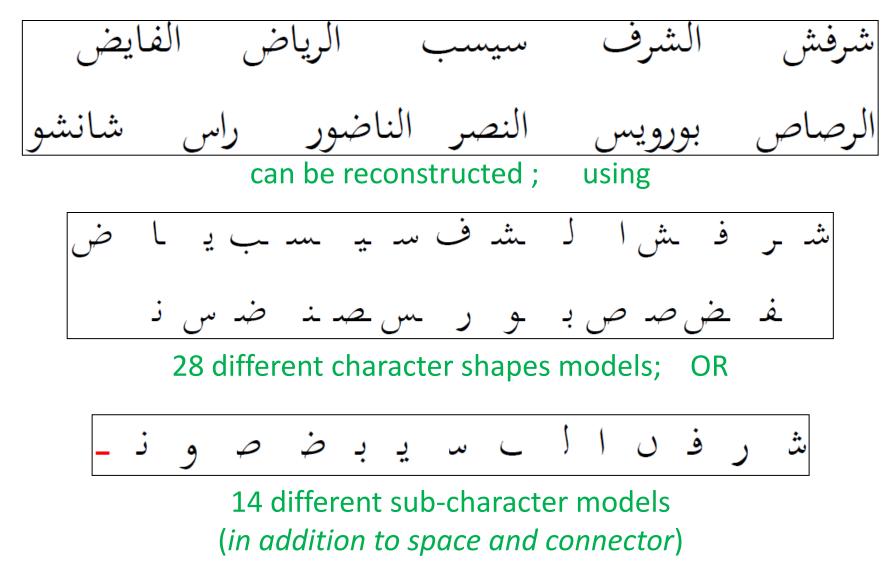
Outline

- Sub-character modeling
- Issues with space modeling
- Special 'Space' and 'Connector' models
- Contextual sub-character HMMs
- Multi-stream contextual sub-character HMMs
- Experiments and results
- Conclusions

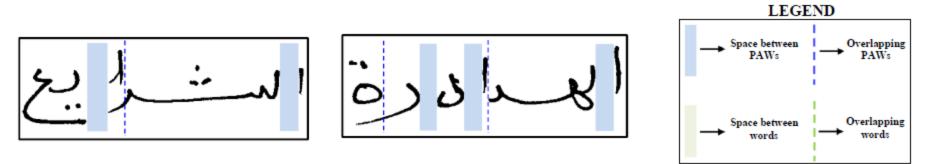


Arabic Sub-Characters

- Capture similar patterns
- Reconstruct the characters using those patterns
 - Use of 'connector' and 'space' models
- Leads to significant reduction of HMMs

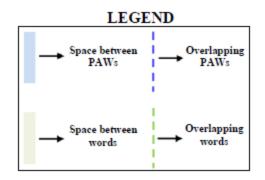

No explicit segmentation needed

Sub-Character Example


Improvements in Sub-Character HMM Model Based Arabic Text Recognition

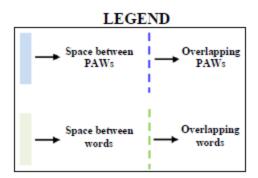
Space Modeling Issues

- > Space modeling is challenging
 - Possibility of overlapping PAWs
- Dreuw et al. presented an approach to space modeling for Arabic [Dreuw08]
- Presence of space between some PAWs but absent between other PAWs



Space Modeling Issues...

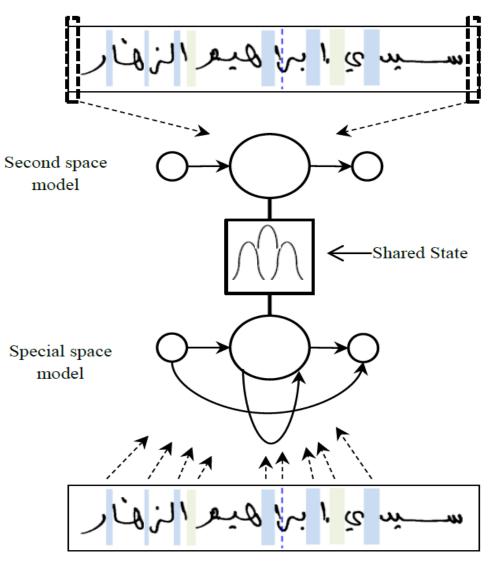
Width of space between PAWs may be larger than the width of space between words



Space Modeling Issues...

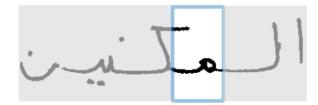
Sometimes difficult to find space between words even though there might exist space between PAWs

ر چ) بعر



Special 'Space' and 'Connector' Models

- Single state models
- Possibility of skipping the space and connector model
 - Transitions from the entry state to the exit state


Contextual Sub-Character HMMs

Important to model the contextual forms in handwritten Arabic text recognition



Examples show character unit (Meem) in different contexts

* Image Source from IFN/ENIT

Improvements in Sub-Character HMM Model Based Arabic Text Recognition

Contextual Sub-Character HMMs... Illustrations

Examples show character unit (Noon) in different contexts

Improvements in Sub-Character HMM Model Based Arabic Text Recognition

Contextual Sub-Character HMMs... Approach

- > Data driven approach to contextual sub-character HMMs
- > Tying at different levels (data insufficiency problem)
 - Transition probabilities of all the contextual forms of a subcharacter are tied
 - State tying between different contextual forms of the subcharacter

✓ Preserving the state sequence

The distance d(x,y) between two states, x and y [Young02]:

$$d(x,y) = -\frac{1}{M} \sum_{m=1}^{M} \log[b_{y}(\mu_{xm})] + \log[b_{x}(\mu_{ym})]$$

Multi Stream HMMs With Stream Splitting

$$b_{y}(o) = \prod_{s=1}^{S} \left[\sum_{m=1}^{M} c_{ym} N(o|\mu_{ym}, \sum_{ym}) \right]^{\gamma_{s}}$$

 Υ_s is the stream weight for stream 's'

Features split into two streams (S = 2)

- Features that were calculated from the image form one stream, and
- Their derivative features form the second stream

Experiments and Results

- ➢ IFN/ENIT database was used for evaluation
- > Continuous HMM system using the HTK tools
- Nine statistical features + Nine derivative features (feature vector : 18)
- No preprocessing done on images

جامعة الملك فهد للبترول والمعادن King Fahd University of Petroleum & Minerals

Experiments and Results... Baseline System: Character-Shape HMMs

- > 178 unique character-shapes in the IFN/ENIT dataset
 - 157 models in our system (replacing infrequent ones)
- Same number of states per character
- > Initial flat start, followed by
- Alignment based training
 - Viterbi initialization for individual models
 - Baum-Welch retraining
- Viterbi decoding for word hypothesis

Experiments and Results... Sub-Character System

- ➢ 97 sub-character HMMs
- Same number of states per sub-character HMM
 - Except the 'space' and the 'connector' models
- Same training procedure as the baseline system
- System extended to contextual sub-character HMMs
- Further extended to multi-stream contextual subcharacter HMMs

جامعة الملك فهد للبترول والمعادن King Fahd University of Petroleum & Minerals

Experiments and Results... Comparison on Some Modeling Statistics (From IFN/ENIT Database Sets a+b+c)

	Baseline system	Sub-character system		
No. of HMMs	157	97		
Average no. of samples per model	531	1734		
Median no. of samples per model	186	492		
No. of models having less than 100 samples	23 out of 157	2 out of 97		
No. of models having less than 200 samples	80 out of 157	9 out of 97		

Experiments and Results...

Evaluation Results - Word Recognition Rate (WRR)

	Train–Test Configuration (Statistical Significance)				
The Recognition System					
	abc-d	abcd-e	abcde-f	abcde-s	
	(±0.38)	(±0.56)	(±0.50)	(±1.56)	
Character-shape HMM system (Baseline)	95.38	90.48	89.40	80.69	
Sub-character HMM system	95.90	91.55	89.74	82.14	
Contextual sub-character HMM system	96.67	92.91	91.57	84.49	
Multi-stream contextual sub-character HMM system	97.22	93.52	92.15	85.12	

جامعة الملك فهد للبترول والمعادن King Fahd University of Petroleum & Minerals

Experiments and Results...

Comparison With Other State-of-the-Art Systems

Systems	Train-Test Configuration			
Systems	abc-d	abcd-e	abcde-f	abcde-s
UPV-PRHLT [Margner10]	95.20	93.90	92.20	84.62
RWTH-OCR [Margner11, Dreuw12]	96.53	92.74	92.20	84.55
Azeem and Ahmed [Azeem13]	97.70	93.44	93.10	84.80
Su et al. [Su13]	96.81	93.55	-	-
Present Work	97.22	93.52	92.15	85.12
Latest Results (unpublished)	07.20	94.76	93.07	86.33
Model length adaptation + Stream weights +	97.30			

Conclusions

Sub-character HMMs for Arabic text recognition

- Allow sharing of common patterns
- Results in compact, efficient, and robust recognizer with reduced model set
- Special '*space*' and '*connector*' models
- Contextual sub-character HMMs
- Multi-stream contextual sub-character HMMs
- State-of-the-art results on the IFN/ENIT database
 - Results on set—s outperformed previously reported results