Irrelevant Variability Normalization via Hierarchical Deep Neural Networks for Online Handwritten Chinese Character Recognition

Jun Du

University of Science and Technology of China

Background

Popular input mode on mobile devices in China

- Solved problem?
 - More and more diversified real data from users
 - How to further improve the recognition accuracy?
 - Writer adaptation
 - Designing a more robust character classifier

Irrelevant Variability Normalization (IVN)

- A general concept for pattern recognition problem
 - Remove any variabilities irrelevant to the content
- First proposed in speech recognition area (1999)
 - Speaker variability (SAT: Speaker Adaptive Training, 1996)
 - Environment variability (NAT: Noise Adaptive Training, 2000)
 - RDT: Region-Dependent Transformation (2006)
- Related work in handwriting recognition area
 - WAT: Writer Adaptive Training (2009) and RDT (2012)
 - Style Normalized Transformation (2011)
 - IVN based feature transformation (2013)

Linear or piecewise linear transformations!

Core Innovations

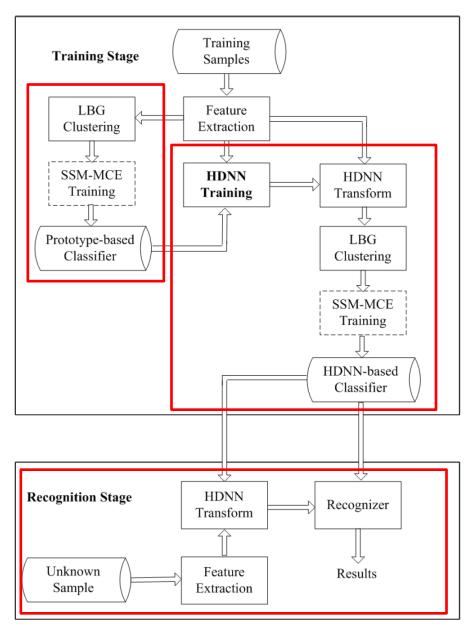
- Hierarchical Deep Neural Network (HDNN)
 - Extension from DNN for regression problem
 - A novel architecture focusing on both "depth" and "width"

- HDNN as a highly nonlinear feature transformation
 - Incorporate with multi-prototype based classifier
 - Application for Chinese handwriting recognition

System Overview

- Baseline classifier
 - LBG Clustering
 - SSM-MCE training
- HDNN-based classifier
 - HDNN training
 - Classifier training

- Online recognition
 - HDNN transform



SSM-MCE training

Classification with discriminant functions

$$r(\mathbf{x}; \mathbf{\Lambda}) = \arg \max_{i} g_{i}(\mathbf{x}; \lambda_{i})$$
$$g_{i}(\mathbf{x}; \lambda_{i}) = -\min_{k} ||\mathbf{x} - \mathbf{m}_{ik}||^{2}$$

Minimum Classification Error (MCE) criterion

$$l(\mathcal{X}; \mathbf{\Lambda}) = \frac{1}{R} \sum_{r=1}^{R} \frac{1}{1 + \exp[-\alpha d(\mathbf{x}_r; \mathbf{\Lambda}) + \beta]}$$

- Misclassification measure
 - Sample Separation Margin (SSM)

$$d(\mathbf{x}_r; \mathbf{\Lambda}) = \frac{-g_p(\mathbf{x}_r; \lambda_p) + g_q(\mathbf{x}_r; \lambda_q)}{2 \parallel \mathbf{m}_{p\hat{k}} - \mathbf{m}_{q\overline{k}} \parallel}$$

IVN-based Feature Transformation

- Feature transformation
 - Normalizing the irrelevant variabilities in handwritten samples

$$\mathbf{x}_r^{\mathrm{ivn}} = \mathcal{F}(\mathbf{x}_r; \mathbf{\Theta})$$

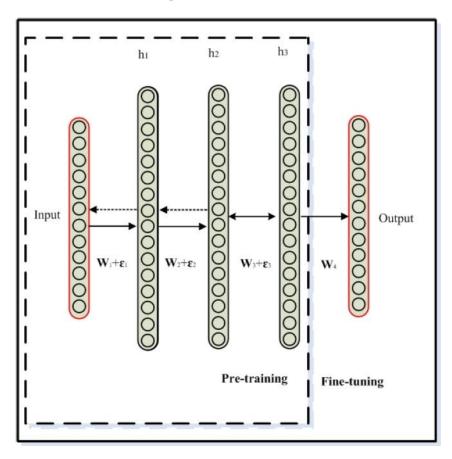
- Objective function for parameter learning
 - Minimizing the Euclidean distance between the IVN transformed feature vector and the prototype of the reference class

$$E = \frac{1}{R} \sum_{r=1}^{R} \|\mathbf{x}_r^{\text{ivn}} - \mathbf{x}_r^{\text{ref}}\|_2^2$$

- Specific forms of transformation function
 - DNN
 - HDNN

DNN Training

- Hinton's recipe
 - Layer-by-layer RBM pre-training
 - Supervised fine-tuning



Why HDNN

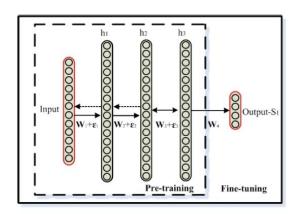
- DNN is widely used for classification
- DNN might be failed for regression as
 - Unbounded output
 - Highly nonlinear relationship between input and output
 - High dimension for both input and output
- HDNN: divide and conquer
 - Divide the output vector into K subvectors
 - Learning is relatively easy between input and each subvector

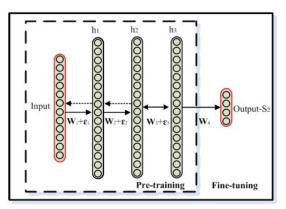
$$E = \frac{1}{R} \sum_{r=1}^{R} \|\mathbf{x}_{r}^{\text{ivn}} - \mathbf{x}_{r}^{\text{ref}}\|_{2}^{2} = \frac{1}{R} \sum_{r=1}^{R} \sum_{k=1}^{K} \|\mathbf{x}_{r,k}^{\text{ivn}} - \mathbf{x}_{r,k}^{\text{ref}}\|_{2}^{2}$$
$$= \sum_{r=1}^{K} E_{k}$$

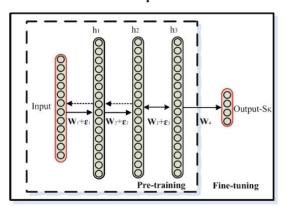
HDNN Training

- HDNN is both deep and wide
- Training of K subnets
 - Share the same pre-training as DNN
 - Fine-tuning for each subnet

- Implementation issues
 - How to design K
- Input is LDA transformed feature vector
 - Only transform first M dimension in output
 - The remaining D-M dimensions are noisy







Experimental Setup

CASIA benchmark

- Vocabulary: 3926 character classes
- Training: totally 939561 samples
- Test: totally 234798 samples

Feature extraction

- 512-dimensional raw feature: 8-directional features
- LDA transformation: 512 -> 128

Configurations for DNN and HDNN

- 1024 nodes for each hidden layer of DNN and HDNN subnets
- M is set as 48

DNN vs. HDNN

- DNN underperforms baseline even using deep layers
 - The mean square error of DNN can not be small enough
 - Even on the training set
- HDNN significantly outperforms baseline

Table 1. Performance (character error rate in %) comparison of different systems prototype-based classifiers with LBG clustering on the testing set.

Methods	Baseline	DNN-1L	DNN-2L	DNN-3L	HDNN-1L	HDNN-2L
CER(%)	16.13	29.26	23.30	25.63	13.44	12.37

HDNN with Different Configurations

- HDNN always achieves better performance with the same
 - Prototype setting
 - Training criterion for classifier

Table 2. Performance (character error rate in %) comparison of systems using prototype-based classifiers with different features and different training criteria on the testing set.

	#prototype	LBG	SSM-MCE
Baseline	1	16.13	12.26
	4	13.68	11.64
HDNN	1	12.37	11.64
(LBG)	4	11.84	11.32
HDNN	1	11.38	10.82
(SSM-MCE)	4	10.96	10.61

Summary and Future Work

- HDNN can potentially outperform DNN in the case of
 - Unbounded regression problem
 - Highly nonlinear relationship between input and output
 - High dimension for both input and output

- Future work
 - Improve HDNN training by designing better objective function
 - Incorporate with deep learning based classifiers