
Kenny Davila 

Document and Pattern Recognition Lab 

Rochester Institute of Technology 

Rochester, New York, USA 

 

September 3, 2014 



Our Application 

• On-line Format 

• Handwritten Source 

• Math (101 classes) Domain 

• Multiple writers Scope 
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CROHME 2013 Classes 

Group Symbols Count Group Symbols Count 

Digits 0-9 10 Arithmetic 
Operators 

+, −, ±, ÷, !,  
×, /, sqrt 

8 

Letters a-z,A-C,E-I,L-N, 
P, R-T,V,X,Y 

44 Logical 
Operators 

→, |, ∀, ∃ 4 

Greek 
Letters 

α, β, γ, λ, ϕ, 
π, θ, σ, μ, Δ 

10 Set 
Operators 

∈ 1 

Functions/ 
Relations 

sin, cos, tan, lim, 
log, =,≠,<,≤,>,≥ 

11 Operators 
with limits 

∑, ∫ 2 

Fence 
Symbols 

(, ), {, }, [, ]  6 Other 
Symbols 

∞, COMMA, .,  
⋯, PRIME 

5 

A total of 101 Classes 
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Math Symbol Examples 

Extracted from CROHME 2013 4 



Ambiguous classes 

Class Group Class Group Class Group 

X, x, times C, c S, s 

1, | , ( , ) , comma P, p 9, q 

comma, ), prime, / V, v O, 0 

Uppercase X Lowercase X Times 
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Research Questions 

0 Can we define a good set of features for shape 
description which provide robust recognition results? 

 

0 Which machine learning techniques are best suited 
for our features? 

 

0 Can we improve recognition rates by modifying the 
training dataset? 
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Related Work: Handwritten  
Math Symbol Recognition 

Method Classifier Features 

Hu and Zanibbi [1] HMM NDTSE, curvature features 

Alvaro et al. [2] RNN - Normalized Coordinates, first and 
second derivatives, curvature 
- Context Window with PCA 

MacLean et al. [3] Greedy DTW Normalized Coordinates 

[1] L. Hu and R. Zanibbi, “HMM-based recognition of online handwritten mathematical symbols using  
       segmental k-means initialization and a modified pen-up/down feature,” in ICDAR 2011 
[2] F. Alvaro et al., “Classification of online mathematical symbols with hybrid features and recurrent  
       neural networks,” in ICDAR, 2013 
[3] S. MacLean and G. Labahn, “Elastic matching in linear time and constant space,” in DAS 2010 
[4] R. Plamondon and  S. Srihari, "Online and off-line handwriting recognition: a comprehensive survey.“  
       TPAMI, 2000 

Comprehensive Survey by Plamondon and Srihari (2000) [4] 
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Proposed methodology 

 

0 Feature Extraction 

 

0 System Training 

 

0 Symbol Recognition 
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A total of 102 values in final vector 
 

0 Global Features (11) 
0 global descriptors like aspect ratio, # of strokes, etc 
 

0 Crossings (30) 
0 Intersections between strokes and lines at X,  Y positions 
 

0 Fuzzy 2D Histograms (25) 
0 2D Histogram of points using fuzzy memberships 

 
0 Fuzzy Orientation Histograms (36) 

0 Histogram of line segment angles  with fuzzy memberships 

 
 

Features 
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0 Number of traces (1) 

0 Normalized Aspect Ratio (1) 

0 Center of mass (2) 

0 Covariance of X and Y coordinates (1) 

0 Per-trace average and total: 

0 Angular Change (2) 

0 Line Length (2) 

0 Number of Sharp Points (2) 
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Global features (11) 
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Crossings Features 

Horizontal Vertical 

2.0 0.0 

1.0 1.8 

1.2 4.0 

1.0 3.8 

1.6 0.0 

Average Counts 

Divide the symbol in regions:   
5 Horizontal, 5 Vertical 
 
Use 9 lines per region computing 
intersection: count, first and last 
 

Compute averages per value per region 
for a total of 30 values 



Fuzzy 2D Histogram 

The symbol region is divided using a grid 
with 5x5 corners for 25 values 
 

For point P compute the membership 
value over each corner C of the cell 
where P is located 
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Fuzzy Histogram of Orientations 

Weights Per Distance 

Weights Per Angle 

Symbol is divided in cells with 3 x 3 
corners with 4 angular bins per corner 
for 36 values in total 
 

For each line segment we weight by: 
1. Segment length 
2. Distance to corners, same as Fuzzy 

2D  Histograms, and affects 4 sets of 
angular bins 

3. Slope angle, it affects the 2 closest 
angular bins 



0 Four different methods applied 

0 AdaBoost.M1 with C4.5 (Maximum 50 trees) 

0 Random Forests (Maximum 50 trees) 

0 SVM Linear Kernel 

0 SVM RBF Kernel 

 

0 Parameters optimized using Grid Search 

 

Classifiers 

14 



0 Each classifier was optimized using Grid search to find 
good parameter values 

 

0 We benchmarked the performance of our method 
using different classifiers 

 

 

Symbol Recognition Experiments 
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Math Symbol Recognition Benchmark 
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Method Classifier Top-1 Top-5 

Hu et al.  HMM 82.9% 97.8% 

Alvaro et al. R-NN 89.4% 99.3% 

MacLean et al.  Greedy DTW 85.8% 99.1% 

Proposed Method 

AdaBoost C4.5 88.4% 98.7% 

Random forests 87.9% 98.4% 

SVM Linear Kernel 88.6% 99.1% 

SVM RBF Kernel 89.8% 99.1% 

Using a subset of MathBrush Dataset  with 93 classes 

Using CROHME 2014 Dataset  with 101 classes  

Method Classifier Without Junk With Junk 

MyScript MLP 91.04% 85.54% 

Alvaro et al. BLSTM-RNN 91.24% / 89.79% 84.14% 

Proposed Method  SVM RBF Kernel 88.66% 83.61% 



Related work: Handwritten 
Data Generation 

Method Goal Method 

Simard et al. [1] Synthetic Digit Images - Elastic Distortion  
- Smooth Random Noise 

Plamondon et al. [2] Synthetic Strokes - Training from Real Data 
- Kinetic Model 

Sarkar et al.[3] Style Identification - K-means Clustering 

[1] P. Simard et al, “Best practices for convolutional neural networks applied to visual document  
      analysis.” in ICDAR, 2003 
[2] R. Plamondon et al, “Recent developments in the study of rapid human movements with the 
       kinematic theory: Applications to handwriting and signature synthesis,” in PR Letters, 2014. 
[3] P. Sarkar, “Style consistent classification of isogenous patterns,” TPAMI, 2005 17 



Data generation 

Existing Sample 

Perlin Noise Maps 

+ 

= 

Distorted Copies 

Original Dataset 

Expanded Dataset 

X Dist. Y Dist. 
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0 First, we tuned up the data generation process itself  to 
find out how much distortion is good for the system using 
a fixed amount of generated data 

0 Perlin noise map sizes 

0 Perlin noise map layers 

0 Maximum displacements 

 

0 Second, we tested how much data should be generated 
using our method using a fixed amount of distortion 

0 Minimum number of samples per class relative to largest class 

 

 

 

Data Generation Experiments 
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Recognition Rates For Different 
Amounts of Synthetic Data 
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Using SVM with Linear Kernel over CROHME 2013 
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Data Generation Trade-Offs 
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Per-Class Recognition Rate Trade-off between  
CROHME 2012 and CROHME 2012 Extended 

Using SVM with Linear Kernel 
(Only classes with more than 5% difference are shown) 



Comparison of Learning Algorithms 
Average Per-Class Recognition Rate 
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Using CROHME 2012 and 2013 datasets 



0 Data generation affected recognition rates with trade-offs: 
0 Lower Global recognition rate 

0 Higher Average Per-Class recognition rate 

 

0 Analysis of confusion matrix shows higher errors between 
ambiguous classes 
0 Context is required to reduce errors 

 

0 If we ignore these errors the new recognition rate is 

0 93.52% (vs 85.89%) for CROHME 2013 (101) 

0 96.36% (vs 94.49%) for CROHME 2012 (75) 

 

Discussion 
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0 Can we define a good set of features for shape description which 
provide robust recognition results? 

 Competitive recognition rates were achieved using adaptations of off-
line features. 

 
0 Which machine learning techniques are best suited for our features? 
 Best method depends on goals: 

0 SVM with RBF kernel was best choice for high recognition rate 
0 Random Forests was best choice for speed 
 

0 Can we improve recognition rates by modifying the training dataset? 
 Trade-offs between ambiguous classes prevent data generation from 

achieving higher recognition rates  
 
 
 
 
 

Conclusions 
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0 Explore additional features 

0 HBF49 by Delaye and Anquetil [1] 

 

0 Apply method on different datasets 

 

0 if context is available, use cascade classification 

0 Group sets of ambiguous classes as a single class each 

0 Use second classifier on each set of ambiguous classes 
with context features 
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Future work 

[1] A. Delaye et al, “Hbf49 feature set: A first unified baseline for online symbol recognition,”   
Pattern Recognition,  2013. 



Questions? 

  

   This material is based upon work supported by the 
National Science Foundation (USA) under Grant No. 
HCC- 1218801 
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Final shape vs. drawing process 

• Two traces 
• Small Angular Variation 

• One trace 
• Large Angular Variation 
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Data balancing strategy 

0 Balance class representation using 

 

 

 

0 T is a parameter 

0 C is the largest class 

 

0 The dataset is balanced if 
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Data generation example 
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0 Based on method by Huang et al. [1] 

0 Removal of noise by resampling traces 

Data preprocessing 
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[1] B. Q. Huang, Y. Zhang, and M.-T. Kechadi, “Preprocessing techniques for online handwriting  
       recognition,” in Intelligent Text Categorization and Clustering. 2009 



CROHME 2013 CROHME 2013 B MathBrush 

Classes 101 75 100 

Folds No No Yes  

Training 68,598 65,544 22,305 

Testing 6,082 6,336 2,531 

Extended 451,637 291,292 - 
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Dataset information 



Comparison of Learning Algorithms 
Global Recognition Rate 
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Using CROHME 2012 and 2013 datasets 
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Ambiguous classes (CROHME 2013) #1 

Class Size Similar 

x 4,115 X, times 

X 223 x, times 

times 477 x, X 

1 5,026 |,(, ), comma 

| 358 1, (, ), prime 

( 3,191 1,| 

) 3,185 1,|, Comma 

Comma 498 1, ), prime, / 

prime 51 |, Comma 

/ 157 Comma, Prime 
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Ambiguous classes (CROHME 2013) #2 
Class Size Similar 

c 754 C 

C 206 c 

p 453 P 

P 85 p 

v 230 V 

V 85 v 

s 191 S 

S 94 s 

q 208 9 

9 583 q 

O 90 0 

0 1,438 o 



The Problem 

The Symbol Recognition Problem 
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Related Work 

 

0  Math Symbol Recognition 

 

0  Data Generation 
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System training 

Training  
Dataset 

Pre-processing 

Feature 
Extraction 

Classifier 
Training 

Trained 
Classifier 
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System recognition 

Input Sample 

Pre-processing 

Feature 
Extraction 

Trained 
Classifier 3 

Output Class 
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Math Symbol Recognition 
Benchmark - CROHME 2014 
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Method Classifier Without Junk With Junk 

MyScript MLP 91.04% 85.54% 

Alvaro et al. BLSTM-RNN 91.24% 84.14% 

Proposed Method  SVM RBF Kernel 88.66% 83.61% 


