# Using Off-line Features and Synthetic Data for On-line Handwritten Math Symbol Recognition

Kenny Davila Document and Pattern Recognition Lab Rochester Institute of Technology Rochester, New York, USA



ICFHR 2014 - Crete, Greece



September 3, 2014

# **Our Application**

| Format | • On-line            |
|--------|----------------------|
| Source | • Handwritten        |
| Domain | • Math (101 classes) |
| Scope  | • Multiple writers   |

## **CROHME 2013 Classes**

| Group                   | Symbols                                 | Count | Group                    | Symbols                          | Count |
|-------------------------|-----------------------------------------|-------|--------------------------|----------------------------------|-------|
| Digits                  | 0-9                                     | 10    | Arithmetic<br>Operators  | +, –, ±, ÷, !,<br>×, /, sqrt     | 8     |
| Letters                 | a-z,A-C,E-I,L-N,<br>P, R-T,V,X,Y        | 44    | Logical<br>Operators     | →,  , ∀, ∃                       | 4     |
| Greek<br>Letters        | α, β, γ, λ, φ,<br>π, θ, σ, μ, Δ         | 10    | Set<br>Operators         | E                                | 1     |
| Functions/<br>Relations | sin, cos, tan, lim,<br>log, =,≠,<,≤,>,≥ | 11    | Operators<br>with limits | ∑,∫                              | 2     |
| Fence<br>Symbols        | (, ), {, }, [, ]                        | 6     | Other<br>Symbols         | ∞, <i>COMMA</i> , .,<br>…, PRIME | 5     |

A total of 101 Classes

## Math Symbol Examples



**Extracted from CROHME 2013** 

# Ambiguous classes

| Class Group          | Class Group | Class Group |
|----------------------|-------------|-------------|
| X, x, times          | С, с        | S, s        |
| 1,   , ( , ) , comma | Р, р        | 9, q        |
| comma, ), prime, /   | V, v        | 0, 0        |



## **Research Questions**

Can we define a good set of features for shape description which provide robust recognition results?

Which machine learning techniques are best suited for our features?

Can we improve recognition rates by modifying the training dataset?

# Related Work: Handwritten Math Symbol Recognition

| Method             | Classifier | Features                                                                                                                 |
|--------------------|------------|--------------------------------------------------------------------------------------------------------------------------|
| Hu and Zanibbi [1] | HMM        | NDTSE, curvature features                                                                                                |
| Alvaro et al. [2]  | RNN        | <ul> <li>Normalized Coordinates, first and<br/>second derivatives, curvature</li> <li>Context Window with PCA</li> </ul> |
| MacLean et al. [3] | Greedy DTW | Normalized Coordinates                                                                                                   |

#### Comprehensive Survey by Plamondon and Srihari (2000) [4]

- [1] L. Hu and R. Zanibbi, "HMM-based recognition of online handwritten mathematical symbols using segmental k-means initialization and a modified pen-up/down feature," in ICDAR 2011
- [2] F. Alvaro et al., "Classification of online mathematical symbols with hybrid features and recurrent neural networks," in ICDAR, 2013
- [3] S. MacLean and G. Labahn, "Elastic matching in linear time and constant space," in DAS 2010
- [4] R. Plamondon and S. Srihari, "Online and off-line handwriting recognition: a comprehensive survey." TPAMI, 2000

7

# Proposed methodology

Peature Extraction

System Training

Symbol Recognition

#### Features

A total of 102 values in final vector

- O Global Features (11)
  - global descriptors like aspect ratio, # of strokes, etc
- Crossings (30)
  - Intersections between strokes and lines at X, Y positions
- Fuzzy 2D Histograms (25)
  - 2D Histogram of points using fuzzy memberships

Fuzzy Orientation Histograms (36)
 Histogram of line segment angles with fuzzy memberships

## Global features (11)

- Number of traces (1)
- Normalized Aspect Ratio (1)
- Center of mass (2)
- Overlap Covariance of X and Y coordinates (1)
- Per-trace average and total:
  - Angular Change (2)
  - Ine Length (2)
  - Number of Sharp Points (2)

## **Crossings Features**



#### **Average Counts**

| Horizontal | Vertical |
|------------|----------|
| 2.0        | 0.0      |
| 1.0        | 1.8      |
| 1.2        | 4.0      |
| 1.0        | 3.8      |
| 1.6        | 0.0      |

Divide the symbol in regions: 5 Horizontal, 5 Vertical

Use 9 lines per region computing intersection: count, first and last

Compute averages per value per region for a total of 30 values 11

## Fuzzy 2D Histogram



The symbol region is divided using a grid with 5x5 corners for 25 values

For point P compute the membership value over each corner C of the cell where P is located

$$P = (x_p, y_p)$$

$$C = (x_c, y_c)$$

 $m_p = \frac{w - |x_p - x_c|}{w} \times \frac{h - |y_p - y_c|}{h}$ 

#### Fuzzy Histogram of Orientations



Weights Per Angle

Symbol is divided in cells with 3 x 3 corners with 4 angular bins per corner for 36 values in total

For each line segment we weight by:

- 1. Segment length
- Distance to corners, same as Fuzzy
   2D Histograms, and affects 4 sets of angular bins
- 3. Slope angle, it affects the 2 closest angular bins

## Classifiers

Four different methods applied
AdaBoost.M1 with C4.5 (Maximum 50 trees)
Random Forests (Maximum 50 trees)
SVM Linear Kernel
SVM RBF Kernel

Parameters optimized using Grid Search

#### Symbol Recognition Experiments

Each classifier was optimized using Grid search to find good parameter values

We benchmarked the performance of our method using different classifiers

#### Math Symbol Recognition Benchmark

| Method           | Classifier        | Top-1 | Top-5 |
|------------------|-------------------|-------|-------|
| Hu et al.        | НММ               | 82.9% | 97.8% |
| Alvaro et al.    | R-NN              | 89.4% | 99.3% |
| MacLean et al.   | Greedy DTW        | 85.8% | 99.1% |
|                  | AdaBoost C4.5     | 88.4% | 98.7% |
| Duan agad Mathad | Random forests    | 87.9% | 98.4% |
| Proposed Method  | SVM Linear Kernel | 88.6% | 99.1% |
|                  | SVM RBF Kernel    | 89.8% | 99.1% |
|                  |                   |       |       |

Using a subset of MathBrush Dataset with 93 classes

| Method          | Classifier     | Without Junk    | With Junk |
|-----------------|----------------|-----------------|-----------|
| MyScript        | MLP            | 91.04%          | 85.54%    |
| Alvaro et al.   | BLSTM-RNN      | 91.24% / 89.79% | 84.14%    |
| Proposed Method | SVM RBF Kernel | 88.66%          | 83.61%    |
|                 |                |                 |           |

Using CROHME 2014 Dataset with 101 classes

# Related work: Handwritten Data Generation

| Method               | Goal                   | Method                                        |
|----------------------|------------------------|-----------------------------------------------|
| Simard et al. [1]    | Synthetic Digit Images | - Elastic Distortion<br>- Smooth Random Noise |
| Plamondon et al. [2] | Synthetic Strokes      | - Training from Real Data<br>- Kinetic Model  |
| Sarkar et al.[3]     | Style Identification   | - K-means Clustering                          |

- [1] P. Simard et al, "Best practices for convolutional neural networks applied to visual document analysis." in ICDAR, 2003
- [2] R. Plamondon et al, "Recent developments in the study of rapid human movements with the kinematic theory: Applications to handwriting and signature synthesis," in PR Letters, 2014.
- [3] P. Sarkar, "Style consistent classification of isogenous patterns," TPAMI, 2005

## Data generation



## **Data Generation Experiments**

- First, we tuned up the data generation process itself to find out how much distortion is good for the system using a fixed amount of generated data
  - Perlin noise map sizes
  - Perlin noise map layers
  - Maximum displacements

 Second, we tested how much data should be generated using our method using a fixed amount of distortion
 Minimum number of samples per class relative to largest class

## Recognition Rates For Different Amounts of Synthetic Data



Using SVM with Linear Kernel over CROHME 2013

20

#### **Data Generation Trade-Offs**



Per-Class Recognition Rate Trade-off between CROHME 2012 and CROHME 2012 Extended Using SVM with Linear Kernel (Only classes with more than 5% difference are shown)

21

## Comparison of Learning Algorithms Average Per-Class Recognition Rate



Using CROHME 2012 and 2013 datasets

## Discussion

O Data generation affected recognition rates with trade-offs:

- O Lower Global recognition rate
- Higher Average Per-Class recognition rate

 Analysis of confusion matrix shows higher errors between ambiguous classes

Ocontext is required to reduce errors

If we ignore these errors the new recognition rate is
93.52% (vs 85.89%) for CROHME 2013 (101)
96.36% (vs 94.49%) for CROHME 2012 (75)

## Conclusions

Can we define a good set of features for shape description which provide robust recognition results?

Competitive recognition rates were achieved using a**daptations of offline features.** 

 Which machine learning techniques are best suited for our features? Best method depends on goals:

- SVM with RBF kernel was best choice for high recognition rate
- Random Forests was best choice for speed

 Can we improve recognition rates by modifying the training dataset? Trade-offs between ambiguous classes prevent data generation from achieving higher recognition rates

#### Future work

Ø Explore additional features

HBF49 by Delaye and Anquetil [1]

• Apply method on different datasets

if context is available, use cascade classification

*O* Group sets of ambiguous classes as a single class each *O* Use second classifier on each set of ambiguous classes with context features

[1] A. Delaye et al, "Hbf49 feature set: A first unified baseline for online symbol recognition," Pattern Recognition, 2013.

## Questions?

This material is based upon work supported by the National Science Foundation (USA) under Grant No. HCC- 1218801



 $\mathbf{R} \cdot \mathbf{I} \cdot \mathbf{T}$ 

#### Final shape vs. drawing process



- Two traces
- Small Angular Variation

- One trace
- Large Angular Variation

## Data balancing strategy

Ø Balance class representation using

$$Min_{count} = T |C|$$

T is a parameter C is the largest class

O The dataset is balanced if

 $T \ge 1.0$ 

## Data generation example

(a) Original (b) Copy 1 (c) Copy 2 (d) Copy 3



(e) Original (f) Copy 1 (g) Copy 2 (h) Copy 3

## Data preprocessing

Ø Based on method by Huang et al. [1]Ø Removal of noise by resampling traces



[1] B. Q. Huang, Y. Zhang, and M.-T. Kechadi, "Preprocessing techniques for online handwriting recognition," in Intelligent Text Categorization and Clustering. 2009

## **Dataset information**

|          | <b>CROHME 2013</b> | <b>CROHME 2013 B</b> | MathBrush |
|----------|--------------------|----------------------|-----------|
| Classes  | 101                | 75                   | 100       |
| Folds    | No                 | No                   | Yes       |
| Training | 68,598             | 65,544               | 22,305    |
| Testing  | 6,082              | 6,336                | 2,531     |
| Extended | 451,637            | 291,292              | _         |

## Comparison of Learning Algorithms Global Recognition Rate



Using CROHME 2012 and 2013 datasets

#### Ambiguous classes (CROHME 2013) #1

| Class | Size  | Similar        |
|-------|-------|----------------|
| X     | 4,115 | X, times       |
| Х     | 223   | x, times       |
| times | 477   | х, Х           |
| 1     | 5,026 | ,(, ), comma   |
| 1     | 358   | 1, (, ), prime |
| (     | 3,191 | 1,             |
| )     | 3,185 | 1, , Comma     |
| Comma | 498   | 1, ), prime, / |
| prime | 51    | , Comma        |
| /     | 157   | Comma, Prime   |

#### Ambiguous classes (CROHME 2013) #2

| Class |   | Size  | Similar |    |
|-------|---|-------|---------|----|
|       | С | 754   | С       |    |
|       | С | 206   | С       |    |
|       | р | 453   | Р       |    |
|       | Р | 85    | р       |    |
|       | v | 230   | V       |    |
|       | V | 85    | V       |    |
|       | S | 191   | S       |    |
|       | S | 94    | S       |    |
|       | q | 208   | 9       |    |
|       | 9 | 583   | q       |    |
|       | 0 | 90    | 0       |    |
|       | 0 | 1,438 | 0       | 34 |
|       |   |       |         |    |

## The Problem



#### **The Symbol Recognition Problem**

## **Related Work**

#### Math Symbol Recognition

O Data Generation

## System training



37

## System recognition



## Math Symbol Recognition Benchmark - CROHME 2014

| Method          | Classifier     | Without Junk | With Junk |
|-----------------|----------------|--------------|-----------|
| MyScript        | MLP            | 91.04%       | 85.54%    |
| Alvaro et al.   | BLSTM-RNN      | 91.24%       | 84.14%    |
| Proposed Method | SVM RBF Kernel | 88.66%       | 83.61%    |