€'Concordia

Are Sparse Representation and
Dictionary Learning Good for
Handwritten Character Recognition!?

Chi Nhan Duong, Kha Gia Quach, and Tien D. Bui
Concordia University, Montréal, Canada
Email: {c duon, k_g, bui}@encs.concordia.ca

| 4th International Conference on Frontiers in Handwriting Recognition
(ICFHR) September |- 4,2014 in Crete, Greece.



€Concordia

Contents

* Motivation

 Contributions

N\

e Related works

J

* Sparse representation based recognition

* Experimental results

e Conclusions

—

4



 Concordia
Image
classification

Motivation

Image Face

denoising and recognition

inpainting

Why Sparse

Representation &
Dictionary Learning ?
Medical
Imaging
Human vi

different cts
exam i

or som (DO [ Could these theories
. ' produce good results for
mation that is co

nandwritten character
Handwis:iisa he same kind. And spa : i .
: tehot tg recognition as in the case of

other applications?

character
recognition

n over he Iast o



——

\/Concordia 4

Contributions

* Developing a sparse representation based
system for handwriting character
recognition.

* Analyzing different factors that affect the SR
based system such as: the choice of input
data, the size of dictionary, and computation
time of this method in three benchmark
databases.

» Experimental results show that using this
framework, the choice of feature space is
less important comparing to other
methods.
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~ Related works
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Related works

 Hybrid approach
> Combining SVM & Convolution Neural Network [10].

o Combining different features & different classifiers [1]

=> can exploit the strengths of features and classifiers, but
expensive to decide which architecture is good for specific data.

e Zhang et al. [ | | ]: decomposed image into three parts: low-
rank component, sparse component and error (i. e. noise) =»
mainly focus on handwriting recovery.

=> Testing with 240 images/digit and achieving 91.24% for
MNIST.

* Wei et al. [12] took into account local information for
dictionary learning and then using the learned dictionary to
improve the performance.
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Sparse representation based recognition
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Sparse representation based recognition

Algorithm 1: Sparse representation based handwritten
character recognition

Input:

- Set of training images of k£ classes

- Testing sample y € RV

(1) Stack the images of each class as columns of matrix
D;i=1,..k.

(2) Building the dictionary:
(a) Use the original matrix D; or
(b) Use the learned matrix B*.

(B",I'") = argmin||D — BI[F + AL,

(3) Sparse Coding: Solving (5) to obtain the sparse
representation « of y

min||a|l; st y=D'a+e
a,€e

4) Computé the residuals and classify y
r, = Hy — D*OéiHQ,i =1..k
Output label of label, <+ arg minr;
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Experimental results

e Databases

# # Image

MNIST 60000 10000 28 x 28
US Portal Service (USPS) 7291 2007 16 x16
CEDAR — upper case 11454 1367 32 %32

CEDAR — lower case 7691 816 32 x 32
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Evaluations

o Effects of dimensional reduction and
feature spaces.

e Dictionary learning for character
recognition.

» Effect of dictionary sizes.
» Computational time.

e Comparison with other methods

10
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Effects of dimensional reduction

Table I

EFFECT OF DIMENSIONAL REDUCTION

Input Data MNIST USPS TWR CEDAR UPPR

Raw Img. | 97.4 (784) | 95.67 (256) | 92.65(1024) | 93.56(1024)

PCA(t=80) 97.2(47) 95.22(20) 91.05(67) 92.17(95)

PCA(t=70) 97.1(29) 94.27(15) 91.05(31) 91.66(46)

PCA(t=60) | 95.82 (13) 90.13(10) 89.83(17) 91(25)

accuracy dimension Gabor feature [7] is mainly
designed for digits rather than
Table 11

EFFECT OF FEATURE SPACES for character Images

CEDAR Performance of this feature:
Input Dat MNIST | USPS
P LWR | UPPR - Use k-nearest neighbor
Raw Img. | 97.4 | 95.67 | 92.65 | 93.56 (k=3)
Gradient 97.35 95.96 R8.36 02 .68 . o
Gabor 91.22 01.48 70.35 75.2 MNIST: 90'4°5A
- USPS: 89.74%

- CEDAR:
- Upper case: 49.63 %
- Lower case:52.38 %
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Effects of dictionary learning

DICTIONARY LEARNING FOR SR

Table III

CEDAR
MNIST | USPS TWR | UPPR
SR-RAW 97.4 95.67 | 92.65 | 93.56
SR-RAW + Dict. Learning 97.66 96.26 | 89.09 | 89.61
SR-PCA 97.2 95.07 | 91.05 | 92.17
SR-PCA + Dict. Learning 97.25 95.52 | 87.26 87.2

* Dictionary learning = boosting the accuracy of SR

based system

e UPPR & LWR: reduce bout 3%
=» increasing the number of classes (26 instead of 10)
=» insufficient training data for some characters (only

~ 5 images/characters) =» reduce the quality of atoms
comparing with original full images.

|2
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Effect of dictionary sizes

|3

Evaluation system:

(1) Choose n images (per class) randomly
(2) Classification based on dictionary conducted from these images.

EX:
For USPS (10 classes)

n = 100 => total images used for learning dictionary is N =100 * 10 = 1000
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Overall performance

Table IV
COMPUTATIONAL TIME
MNIST | CEDAR-LWR | CEDAR-UPPR

SR-RAW 0.25 0.17 0.28

SR-PCA 0.045 0.023 0.04
VAM [15]
(no feature ex- 0.069 0.018 0.026
traction time)

Table V

COMPARING WITH OTHER METHODS

MNIST LWR UPPR

(26 classes) | (26 classes)
SR-RAW 98.21 92.65 93.56
VAM [15] 99.03 93.5 95.9
SAB [16] NA 84.93 79.52
BLU [17] NA 71.52 81.58

[15] G.Vamvakas, B. Gatos, and S. J. Perantonis, “Handwritten character recognition
through two-stage foreground sub-sampling,” PR, 2010.

| 4
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Conclusions

* |n this paper, we have developed a sparse
representation based system for handwritten
character recognition.

» Representing the testing image as a combination
of atoms in a dictionary makes the system more
robust to the changes in feature spaces and the
dimension of input data.

 Different factors that affect the performance of
the system are also examined in our experiments.

o Although the best performance of SR based system
cannot beat the state-of- the-art methodes, its ability to
remove the effect of feature space can help to
improve its flexibility and efficiency.
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Algorithm 2 Algorithm for dictionary learning [14]
Input: Image data matrix X and parameter A
Step 1: Initialize 7 randomly with unit [o-norm
for each column of D
Step 2: Fix D and solve A
Solve the following minization problem using convex
optimization technique described in [18]
Ja = argmina{||X — DA} + AllAl1}
Step 3: Fix A and update D
We update d; one by one while fixing all the other
columns of D, 1e. d;,I # j. We can find the update
by optimizing the following problem.
Jp = argminp || X — DA||7 s.t. dl d; = 1,V5
We use Lagrange multiplier ¥ to convert the objective
function. After that differentiating J3, w.r.t. d;. and
set it to 0. We have
d }aT{crjﬂfT —A) !
f’ 1Y o |2
Step -‘I Go back to ﬁ.tep 2 until the values of Jp and Jpu
are converged or the maximum number of iterations
is reached. Finally, output D.
Output: D
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