Recognition System for On-line Sketched Diagrams

<u>Martin Bresler</u>¹, Truyen Van Phan², Daniel Průša¹, Masaki Nakagawa², Václav Hlaváč¹

¹Center for Machine Perception, Department of Cybernetics Faculty of Electrical Engineering, Czech Technical University in Prague 166 27, Praha 6, Technická 2, Czech Republic

> ²Department of Computer and Information Science Tokyo University of Agriculture and Technology Tokyo 184-8588, Japan

> > 4th September 2014

Diagram Structure

- Diagrams consisting of:
 - Symbols with relatively stable appearance (uniform symbols) connected by arrows.
 - 2 Text can label both, the uniform symbols and the arrows.
- Diagram examples:

2 / 20

Recognition Pipeline

- Text separation
 - Classify single strokes into two classes: text and shapes.
 - Ideally remove all text strokes.
 - Practically difficult \implies do not remove controversial strokes.

Recognition Pipeline

- Text separation
 - Classify single strokes into two classes: text and shapes.
 - Ideally remove all text strokes.
 - Practically difficult ⇒ do not remove controversial strokes.
- 2 Estimation of a distance threshold
 - Estimated from shape strokes only. Referenced as distThresh.
 - Necessary in the following steps of the pipeline to determine proximity of strokes or/and points.

Recognition Pipeline

- Text separation
 - Classify single strokes into two classes: text and shapes.
 - Ideally remove all text strokes.
 - Practically difficult ⇒ do not remove controversial strokes.
- 2 Estimation of a distance threshold
 - Estimated from shape strokes only. Referenced as **distThresh**.
 - Necessary in the following steps of the pipeline to determine proximity of strokes or/and points.
- 3 Symbol candidates detection
 - Detect symbols with relatively stable appearance first. Referenced as uniform symbols.
 - Classification based on appearance of stroke groups obtained by an oversegmentation.
 - Arrows having varying appearance detected as connectors between two uniform symbols.

4 Structural analysis

- Selection of symbol candidates forming a valid diagram.
- Each symbol candidate has a score assigned depending on: its appearance, relations with other symbol candidates.
- Search for a solution with the highest score optimization task (max-sum problem).

4 Structural analysis

- Selection of symbol candidates forming a valid diagram.
- Each symbol candidate has a score assigned depending on: its appearance, relations with other symbol candidates.
- Search for a solution with the highest score optimization task (max-sum problem).

5 Text recognition

- Utilize already known structure of the diagram to define text blocks and assign them to symbols.
- Recognize meaning of the text blocks.

- Based on Van Phan and Nakagawa ICFHR 2014.
- We used a Bidirectional Long-Short Term Memory (BLSTM) Recurrent Neural Network (RNN) as a classifier.

- Based on Van Phan and Nakagawa ICFHR 2014.
- We used a Bidirectional Long-Short Term Memory (BLSTM) Recurrent Neural Network (RNN) as a classifier.
- Combination of unary and binary features:
 - Unary features express how appearance of a stroke fits a concrete class.
 - Binary features express how relations with neighbouring strokes support a class transition.

- Based on Van Phan and Nakagawa ICFHR 2014.
- We used a Bidirectional Long-Short Term Memory (BLSTM) Recurrent Neural Network (RNN) as a classifier.
- Combination of unary and binary features:
 - Unary features express how appearance of a stroke fits a concrete class.
 - Binary features express how relations with neighbouring strokes support a class transition.
- The precision of 97.8 % achieved:
 - 97.3% in the shapes class
 - 98.1 % in the text class
- The classifier biased to have smaller error in the shapes class:
 - 99.2 % in the shapes class
 - 89.7% in the text class

Example showing the need for the bias:

(a) Unbiased recognition result

(b) Biased recognition result

- Diagrams have different sizes, users have different writing styles, and different devices are used for the ink collection.
- The distance threshold must be extracted from data.
- We define the threshold as $distThresh = \alpha \cdot Dmed$.
 - Dmed is the median of values determined as lengths of diagonals over bounding boxes of all single shape strokes present in a diagram.
 - α is a coefficient which we empirically chose to be $\alpha = 0.35$.
- Strokes grouping task was used to tune the parameter α .

Distance Threshold – Strokes Grouping

- Oversegmentation is done by grouping of strokes.
- All possible sets of strokes fulfilling the following conditions are created:
 - Strokes in a set are spatially close.
 - Set does not contain more than *n* (5 for flowcharts) strokes.
 - Set consists of two consecutively drawn parts at most.

Distance Threshold – Strokes Grouping

- Oversegmentation is done by grouping of strokes.
- All possible sets of strokes fulfilling the following conditions are created:
 - Strokes in a set are spatially close.
 - Set does not contain more than *n* (5 for flowcharts) strokes.
 - Set consists of two consecutively drawn parts at most.
- Two strokes are spatially close if:
 - The distance between their two closest points d < distThresh.</p>
- We tuned the prameter α by searching for a value, where the strokes grouping algorithm finds the most true symbols (biggest recall).

- **SVM** classifier based on the trajectory-based normalization and direction features by Liu and Zhou 2006 [1].
- Classifying groups of spatially and temporarily close strokes.
- Trained with negative examples to have rejection ability.
- Samples of one class clustered into sub-classes based on the descriptor.
- Logistic regression for **posterior probability** (score).
- Top-3 results, recall 92.0%, precision 42.0%.

Arrows detected between pairs of symbol candidates:

- Find an arrow **shaft** as a sequence of strokes leading from the first symbol to the second symbol.
- 2 Find an arrow head determining orientation of the arrow.
- **3** Compute a score of the found arrow: $score = \exp(\ln(0.5) \cdot \frac{distSum}{distThresh})$, where distSum is a sum of the distances between connector's endpoints and corresponding connection points of symbols and distances between consecutive strokes of the connector.

- Each symbol candidate has its own score.
- Symbol candidates might be in a relation with other symbol candidates, each relation has its own score:
 - **1** Conflict symbol candidates share stroke(s). $score = -\infty$
 - 2 Overlap bounding boxes of symbol candidates overlaps. $score = -\frac{S_{A \cap B}}{\min(S_A, S_B)}$, where A, B... bounding boxes of the first and the second symbol $S_A, S_B, S_{A \cap B}...$ area of A, B, and their intersection

The pairwise max-sum labeling problem is formulated as:

$$\max_{k\in K^V}\Big[\sum_{u\in V}g_u(k_u)+\sum_{\{u,v\}\in E}g_{uv}(k_u,k_v)\Big],$$

where an undirected graph G = (V, E), a finite set K, and numbers $g_u(k_u), g_{uv}(k_u, k_v) \in \mathbb{R} \cup \{-\infty\}$ are given.

The pairwise max-sum labeling problem is formulated as:

$$\max_{k\in K^V}\Big[\sum_{u\in V}g_u(k_u)+\sum_{\{u,v\}\in E}g_{uv}(k_u,k_v)\Big],$$

where an undirected graph G = (V, E), a finite set K, and numbers $g_u(k_u), g_{uv}(k_u, k_v) \in \mathbb{R} \cup \{-\infty\}$ are given.

Our model:

V - symbol candidates E - pairs of interacting nodes $K = \{0, 1\}$ - labels indicating presence in the solution $g_u(k_u)$ - score of symbol candidates $g_{uv}(k_u, k_v)$ - score of relations

 $g_u(0) = 0, g_u(1) = s$ for each node u with score s $g_{uv}(1, 1) = -\infty$ if u and v are in conflict or they are both arrows connected to the same connection points

 $g_{uv}(0,1) = -\infty$ if u is a symbol and v its arrow $g_{uv}(1,1) = s_2$ if u and v are two overlapping symbols

・ 同 ト ・ ヨ ト ・ ヨ ト …

 $g_{uv}(k, \ell) = 0$ for all other cases

Structural Analysis – Example

- Suppose that the following symbol candidates were detected in the example below:
 - 1: process $\{t_1\} s_1$
 - 2: connection $\{t_4\} s_2$
 - 3: connection $\{t_8\} s_3$
 - 4: terminator $\{t_8\} s_4$

5: arrow $\{t_2, t_3\}$ $[1 \rightarrow 2] - s_5$ 6: arrow $\{t_5, t_6, t_7\}$ $[1 \rightarrow 3] - s_6$ 7: arrow $\{t_5, t_6, t_7\}$ $[1 \rightarrow 4] - s_7$

周 ト イ ヨ ト イ ヨ ト

- All unused strokes are considered.
- Text blocks are formed with the knowledge of the diagram structure.
- Text blocks are recognized by MS Text Recognizer.

Two possibilities: text inside a symbol and text labeling an arrow

Demonstration that the text block are salient objects

- ₹ 🖬 🕨

-

Experiments

- Experiments done on two databases flowcharts (FC) by Awal et al. 2011 [2] and finite autamata (FA).
- Comparison with the state-of-the-art by Carton et al. 2013 [3].

	Correct stroke		Correct symbol segmentation	
Class	labeling [%]		and recognition [%]	
	Carton et al.	Ours	Carton et al.	Ours
Arrow	83.8	85.3	70.2	74.4
Connection	80.3	93.3	82.4	93.6
Data	84.3	95.6	80.5	88.8
Decision	90.9	90.8	80.6	74.1
Process	90.4	93.7	85.2	87.2
Terminator	69.8	89.7	72.4	88.1
Text	97.2	99.0	74.1	87.9
Total	92.4	95.2	75.0	82.8

Recognition results for the FC domain.

Class	Symbols by structure	Symbols by strokes	Labeling
Arrow	91.2	84.4	89.3
Arrow in	84.3	80.0	78.5
Final state	95.3	93.8	96.1
State	98.7	94.5	95.2
Label	96.5	96.0	99.1
Total	94.6	91.5	94.5

Recognition results for the FA domain.

Experiments

 Histogram showing how many diagrams were recognized with specific number of errors:

17 / 20 M. Bresler, T. Phan, D. Průša, M. Nakagawa, V. Hlaváč

Recognition System for On-line Sketched Diagrams

- Implemented in C# and tested on a standard tablet PC Lenovo X230 (Intel Core i5 2.6 GHz, 8GB RAM) with 64-bit Windows 7 operating system.
- We are able to recognize a diagram of the average size in less than 1.5 seconds (1.39s).
- It makes our system faster than the system proposed by Carton et al. with average recognition time 1.94s.

	minimal	maximal	average	median
optimization	0.02 / 0.04	3.98 / 4.93	0.59 / 0.56	0.51 / 0.51
whole recognition	0.23 / 0.25	8.83 / 15.86	1.39 / 2.37	1.02 / 1.73

Running time in seconds for FC / FA databases.

Thank you for your attention.

References:

- [1] C.-L. Liu and X.-D. Zhou: Online Japanese Character Recognition Using Trajectory-Based Normalization and Direction Feature Extraction, IWFHR 2006.
- [2] A.-M. Awal, G. Feng, H. Mouchére, and C. Viard-Gaudin: First Experiments on a New Online Handwritten Flowchart Database, DRR 2011.
- [3] C. Carton, A. Lemaitre, and B. Couasnon: *Fusion of Statistical and Structural Information for Flowchart Recognition*, ICDAR 2013.

4 B b 4 B

(Loading Video...)

- 4 回 2 - 4 □ 2 - 4 □

æ