Dropout improves Recurrent Neural Networks for Handwriting Recognition

Vu Pham Théodore Bluche Christopher Kermorvant Jérôme Louradour

tb@a2ia.com, jl@a2ia.com

62ia

Dropout improves Recurrent Neural Networks for Handwriting Recognition Vu Pham Théodore Bluche Christopher Kermorvant Jérôme Louradour

1 RNN for Handwritten Text Line Recognition

- Offline Handwritten Text Recognition
- Recurrent Neural Networks (RNN)

2 Dropout for RNN

3 Experiments

- Improvement of RNN
- Improvement of the complete recognition system

くほう くほう

Outline

1 RNN for Handwritten Text Line Recognition

- Offline Handwritten Text Recognition
- Recurrent Neural Networks (RNN)

2 Dropout for RNN

3 Experiments

- Improvement of RNN
- Improvement of the complete recognition system

프 > - (프 >

Offline Handwritten Text Recognition

- Line segmentation in the front-end
- "Temporal Classification": Variable-length 1D or 2D input \mapsto 1D target sequence (different length)

Modeling: Recurrent Neural Networks (RNN) State-of-the-art in Handwritten Text Recognition

- RNN Network Architecture (Graves & Schmidhuber, 2008)
 - Multi-Directional layers of LSTM unit "Long-Short Term Memory" – 2D recurrence in 4 possible directions
 - Convolutions: parameterized subsampling layers
 - Collapse layer: from 2D to 1D (output $\sim \log P$)

Modeling: Recurrent Neural Networks (RNN) State-of-the-art in Handwritten Text Recognition

RNN Network Architecture (Graves & Schmidhuber, 2008)

- Multi-Directional layers of LSTM unit "Long-Short Term Memory" – 2D recurrence in 4 possible directions
- Convolutions: parameterized subsampling layers
- Collapse layer: from 2D to 1D (output $\sim \log P$)
- OCTC Training ("Connectionist Temporal Classification")
 - The network can output all possible symbols and also a blank output
 - Minimization of the Negative Log-Likelihood $-\log(P(Y|X))$ (NLL)

Modeling: Recurrent Neural Networks (RNN) State-of-the-art in Handwritten Text Recognition

The recurrent neurons are Long Short-Term Memory (LSTM) units

Dropout improves Recurrent Neural Networks for Handwriting Recognition Vu Pham Théodore Bluche Christopher Kermorvant Jérôme Louradour

Loss function: Connectionist Temporal Classification (CTC)

Deal with several possible alignments between two 1D sequences

- U = 3: Number of target symbols
- T: Number of RNN outputs \propto image width
- Basic decoding strategy (without lexicon neither language model):

 $[\emptyset \dots] T \dots [\emptyset \dots] E \dots [\emptyset \dots] A \dots [\emptyset \dots] \qquad \mapsto \qquad ``TEA''$

Loss function: Connectionist Temporal Classification (CTC)

Deal with several possible alignments between two 1D sequences

- U = 3: Number of target symbols
- T: Number of RNN outputs \propto image width
- Basic decoding strategy (without lexicon neither language model):

 $[\emptyset \dots] T \dots [\emptyset \dots] E \dots \emptyset \dots E \dots [\emptyset \dots] \xrightarrow{\mapsto} "TEE"$

Optimization: Stochastic Gradient Descent

Simple and efficient

- No mathematical guarantee (no chance to converge to the real global minimum)
- But popular with deep networks: works well in practice! (find "good" local minima)

```
for ( input, target ) in Oracle() do
    output= RNN.Forward( input )
    outGrad= CTC_NLL.Gradient( output, target )
    paramGrad= RNN.BackwardGradient( input, ..., outGrad )
    RNN.Update( paramGrad )
end for
```

伺下 イヨト イヨト ニヨ

RNN for Handwritten Text Line Recognition

- Offline Handwritten Text Recognition
- Recurrent Neural Networks (RNN)

2 Dropout for RNN

3 Experiments

- Improvement of RNN
- Improvement of the complete recognition system

Dropout General Principle [Krizhevsky & Hinton, 2012]

Training:

• Randomly set to 0 intermediate activities (*) with probability p (typically p = 0.5)

(*) neurons outputs usually in $[-1,1],\,[0,1]$ or $[0,\infty)$

 $\bullet~\sim$ Sampling from 2^N different architectures that share weights

Decoding:

- $\bullet\,$ All intermediate activities are scaled, by 1-p
- $\bullet~\sim$ Geometric mean of the outputs from 2^{N} models

Featured in award-winning convolutional networks (ImageNet)

Dropout Dropout with recurrent layer

- Recurrent connections are kept untouched
- Dropout can be implemented as separated layer (outputs identical to inputs, except at dropped locations)

Dropout Overview of the full network

- After recurrent LSTM layers
- Before feed-forward layers (convolutional and linear layers)

Dropout improves Recurrent Neural Networks for Handwriting Recognition Vu Pham Théodore Bluche Christopher Kermorvant Jérôme Louradour

3

< ロ > < 同 > < 回 > < 回 > < 回 > <

RNN for Handwritten Text Line Recognition

- Offline Handwritten Text Recognition
- Recurrent Neural Networks (RNN)

2 Dropout for RNN

3 Experiments

- Improvement of RNN
- Improvement of the complete recognition system

Э

< ∃ >

Databases and performance assessment

			Training subset		
		# different	# labelled	# characters	
Database	Language	characters	lines	(in lines)	
IAM	English	78	9, 462	338, 904	
Rimes	French	114	11,065	429,099	
OpenHaRT	Arabic	154	91, 811	2, 267, 450	

Training:

Minimizing Negative Log-Likelihood (NLL) with CTC alignments.

Decoding:

Pick the best label at each timestep, Remove duplicates, then blanks.

Evaluation:

Character Error Rate (%), on a separate dataset. Reduction w/ and w/o dropout.

Training convergence time is also interesting, but not critical.

글 > - - 글 >

14/22

Experiments

Results: Dropout on the topmost LSTM layer

- $\bullet\,\sim$ Dropout on high-level features used in Logit Regression
- Error rate reduction when varying the number of hidden units in the topmost layer

Results: Dropout on all LSTM layers

- Use the good recipe whenever possible!
- Number of hidden units tuned (on validation dataset) to reach best performance

Dropout improves Recurrent Neural Networks for Handwriting Recognition

Vu Pham Théodore Bluche Christopher Kermorvant Jérôme Louradour

16/22

Results analysis: Dropout acts as Regularization

Less overfitting:

the gap between training and validation loss is smaller

• Training with dropout is slower:

There is a trade-off between accuracy & training speed. (However, decoding speed is the same for a given neural archi.!)

Results analysis: Dropout acts as Regularization

- Outgoing weights are smaller: L1 and L2 norms are greatly reduced
- Better than L1/L2 Weight Decay (and also simple to implement)
 - Data-driven approach.
 - No need to tune λ ∈ [0, +∞(to control the Bias-Variance Tradeoff. Only one hyper-parameter p ∈ [0, 1(that is less sensitive. NB: p = 0.5 works well!

18/22

• On the other hand, tanh activations (in [-1,1]) are sharper: More "helpful" features learned by "preventing co-adaptation" (Hinton et al., 2012)

Intergration in a complete recognition system

Performance improves when language constraints (vocabulary, LM) are added.

Decoding in a hybrid RNN/HMM framework ($\frac{p(y|x)}{p(y)} \propto \frac{p(x|y)}{p(x)}$)

- HMM: One state for each label including blank, with self-loop and outgoing transition
- Lexicon: Each word is the sequence of character HMMs with optional blanks in between
- Language Model: Word n-grams

The goal is to find the optimal word sequence \hat{W}

$$\hat{\mathbf{W}} = \arg\max_{\mathbf{W}} p(\mathbf{W}|\mathbf{X}) = \arg\max_{\mathbf{W}} p(\mathbf{X}|\mathbf{W}) p(\mathbf{W})$$
(1)

シマペ 19/22

Results in a complete system:

Word Error Rate of Full Systems (Optical Model + Lexicon/Language Model):

Database	Language	# words	# words in vocabulary	% 00V	LM	Perplexity
Rimes	French	5,639	12k	2.6%	4-gram	18
IAM	English	25,920	50k	3.7%	3-gram	329
OpenHaRT	Arabic	47,837	95k	6.8%	3-gram	1162

Dropout improves Recurrent Neural Networks for Handwriting Recognition

Vu Pham Théodore Bluche Christopher Kermorvant Jérôme Louradour

20/22

Conclusions and future work

- Dropout acts as a regularizer: outgoing weights tend to be lower
- Dropout improves accuracy of Offline Text Recognition with RNN about 10-20% improvement in CER and WER
- Training convergence with dropout is longer roughly twice slower

Thank you for your attention!

Questions and comments are welcome.

tb@a2ia.com, jl@a2ia.com

Dropout improves Recurrent Neural Networks for Handwriting Recognition Vu Pham Théodore Bluche Christopher Kermorvant Jérôme Louradour

《曰》《卽》《臣》《臣》 [] 臣