A ROBUST ONLINE SIGNATURE BASED CRYPTOSYSTEM

Ashok K. Bhateja

Scientific Analysis Group
Defence R & D Organization, Delhi, India

Santanu Chaudhury

Department of Electrical Engineering Indian Institute of Technology, Delhi, India

P. K. Saxena

Scientific Analysis Group
Defence R & D Organization, Delhi, India

Outline

- Introduction
 - □ The Problem Statement
 - Fuzzy vault
- Proposed Scheme
 - **■** Feature Extraction
 - AdaBoost Algorithm
 - Weighted Back Propagation Algorithm
 - Encoding & Decoding in the proposed cryptosystem
- Experimental Results
- Conclusion
- References

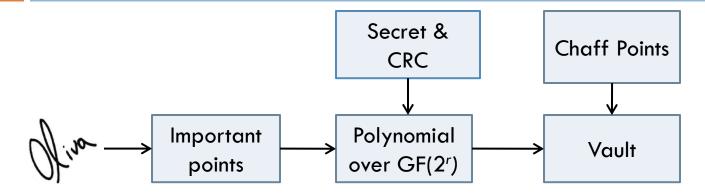
Introduction

- Cryptography: Protect information by ensuring
 - Confidentiality
 - Integrity and
 - Authenticity
- □ Cryptosystem:
 - \blacksquare Binds plaintext x and key k using a mathematical function f

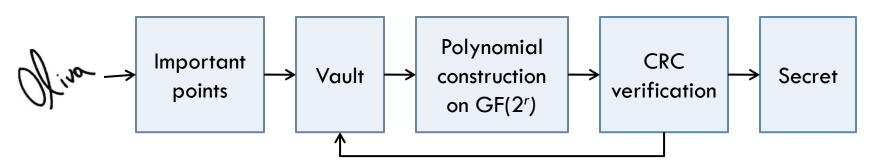
 - \blacksquare Extraction of x or k is computationally hard
- Management and maintenance of the keys is one of the major problems in a cryptosystem
- Cryptographic keys stored in highly secure location with
 - Password
 - Personal Identification Number (PIN)

Introduction

- □ Signatures are used
 - Financial transactions
 - Documents
 - Verification
- Dynamic features: velocity, slope along with static (shape) features.
- □ Variations in online signature are more than other biometric such as fingerprint, iris, and face
- Allowing for these variations and providing protection against forgers is a challenging task.


Problem Statement

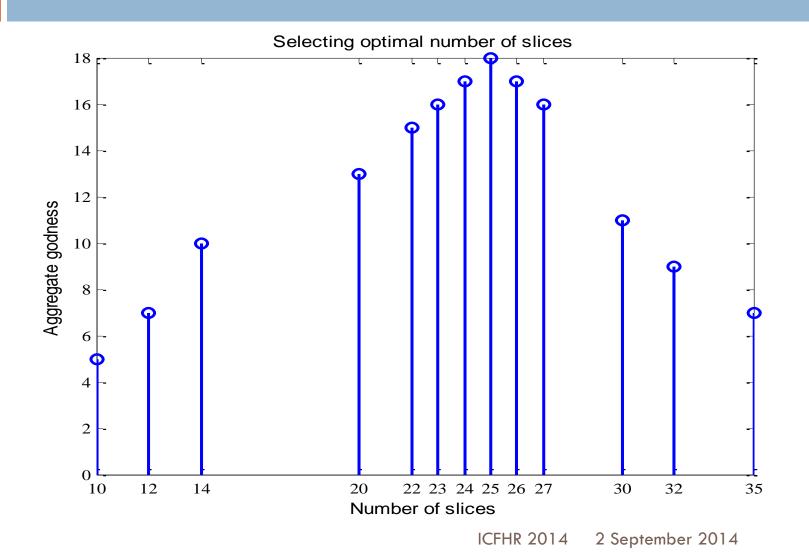
- □ Development of a robust online signature based cryptosystem to hide the secret by binding it with important features of online signature
- □ Important features
 - Consistent in the genuine signature and
 - Inconsistent in the forged signature


Fuzzy Vault

- □ Developed by Juels and Sudan [1] in 2002
- □ Implemented by Uludag et al. in 2005 using fingerprint biometric [2]
- Security is based on the infeasibility of the polynomial reconstruction problem
- □ In 2006, Kholmatov and Yanikoglu used trajectory crossing, ending and high curvature points of online signature [3] for the construction of the fuzzy vault.

Fuzzy Vault

Fuzzy Vault Encoding


Fuzzy Vault Decoding

Proposed Online Signature Based Cryptosystem

A robust online signature based cryptosystem to hide the secret by binding it with important online signature templates

- □ [Slicing]: The online signature is divided into fixed number of slices $(m \times k)$.
- [Feature Extraction]: Find the values of all the important features.
- □ [Classifiers input]: Form *k* sets of slices, with each set consisting of *m* consecutive slices. The *m* values of the features form the input for the classifier.
- [Training]: For each set of slices, train the networks using Weighted Back propagation with AdaBoost.
- [Encoding]: Creation of LUT
- □ [Decoding]: Finding secret

Optimal number of slices

Feature Extraction

- \square Divide the signature into n time slices
- \square Find S_i and S_i' i.e. sum of the variations of the genuine and forged signatures, about the mean of the genuine signature

$$S_i = \sum_{j=1}^{u} \sum_{k=1}^{s_g} \sigma_{ijk}^2 \& S_i' = \sum_{j=1}^{u} \sum_{k=1}^{s_f} \sigma_{ijk}'^2$$

Where σ_{ijk}^2 is variance of j^{th} user in k^{th} genuine signature in i^{th} slice and $\sigma_{ijk}^{'}$ is the variance of j^{th} user in k^{th} forged signatures in i^{th} slice about the mean of genuine signature in the same i^{th} slice.

 \square Goodness function G_f of feature f

$$G_f = \frac{\sum_{i=1}^n S_{i'}}{\sum_{i=1}^n S_i}$$

☐ The features having goodness value greater than a threshold are the important features

Adaptive Boosting

- □ All data-points are assigned equal initial weights
- □ In each iteration:
 - A weak classifier is trained based on the weighted samples
 - The weights of misclassified data-points are increased
 - So next classifier gives more emphasis to datapoints with more weight
- A weighted vote of selected weak classifiers is used to decide the output of the ensemble

AdaBoost - Weighted Learning

Psedocode

Given: $(x_1, y_1), ..., (x_m, y_m)$ where $x_i \in \mathcal{X}, y_i \in \{-1, +1\}$. Initialize: $D_1(i) = 1/m$ for i = 1, ..., m. For t = 1, ..., T:

- Train weak learner using distribution D_t.
- Get weak hypothesis $h_t: \mathscr{X} \to \{-1, +1\}$.
- Aim: select h_t with low weighted error:

$$\varepsilon_t = \Pr_{i \sim D_t} \left[h_t(x_i) \neq y_i \right].$$

- Choose $\alpha_t = \frac{1}{2} \ln \left(\frac{1 \varepsilon_t}{\varepsilon_t} \right)$.
- Update, for i = 1, ..., m:

$$D_{t+1}(i) = \frac{D_t(i)\exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

where Z_t is a normalization factor (chosen so that D_{t+1} will be a distribution).

Output the final hypothesis:

$$H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right).$$

Weighted Back Propagation Algorithm

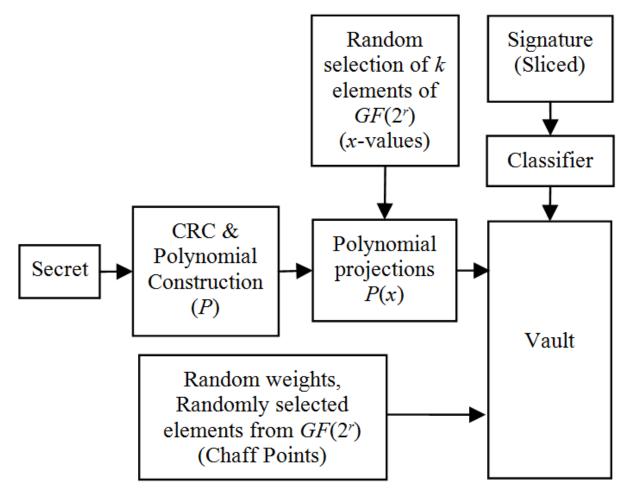
Forwards pass

- For each hidden layer and output layer neurons
 - Compute the weighted sum (*S*) of the activation of the previous layer neurons.
 - Find the activation of the neuron. i.e. sigmoid function of the sum *S*.
- Compute the error of each of the output layer neurons
- □ Find the weighted error i.e. weight of the training example × total error

Backward pass

- Find local gradient of the neurons
- Adjust the weights.
- □ Iterate forward and backward pass until convergence of the network.

Online Signature Based Cryptosystem Encoding


\Box Creation of secret polynomial P.

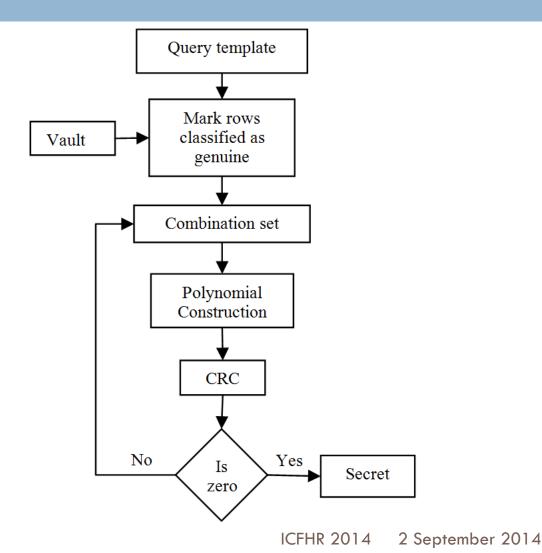
- □ Find CRC (Cyclic Redundancy Check) of the secret (*s* bits) using *r* bit generating polynomial
- □ Concatenate the CRC with the secret. Let it be SC
- □ Convert SC into the elements of the field.
- \square Construct polynomial P of degree k-1 over the field $GF(2^r)$.

Creation of LUT

- \square Randomly select k rows of the table, one for each set of slices
- \square Randomly select *k* elements of the field $GF(2^r)$, one for each set of slices. Call them *x*-values.
- \Box Find the polynomial projections of the x-values in the field
- \square Store the weights of the BPNN (Back Propagation Neural Network) along with α 's (importance of the classifier) in the first column of the selected row, corresponding x-value and their polynomial projection in second and third columns respectively
- \square Fill the remaining second and third column entries of LUT by randomly selecting the elements of $GF(2^r)$
- \Box Fill the remaining entries of the first column by randomly generated weight values, not appearing in the selected k rows

Online Signature Based Cryptosystem Encoding

ICFHR 2014 2 September 2014


Look Up Table (Vault)

Weight & importance of classifier	r-bit random numbers in $GF(2^r)$ i.e. x	P(x)
:	:	:
WS3	1540	3981
:	:	:
WS4	2151	4367
:	:	:
WS2	5830	1087
:	:	:
WS1	7531	9034
:	:	:
WS5	1567	3304
:	:	:

Online Signature Based Cryptosystem Decoding

- Divide the query template into *k* sets each consisting of *m* slices.
- $lue{}$ For each set of m slices, mark the rows whose classifier (weights and importance stored in the first column) classifies the signature as genuine.
- Take a combination of k pairs of (x, P(x)) points from the marked rows and construct the polynomial over $GF(2^r)$.
- Compute the CRC of the polynomial.
- If CRC is not zero, take another combination of k points, else stop.

Online Signature Based Cryptosystem Decoding

EXPERIMENTAL RESULTS

- □ SVC 2004 database [11] was used.
- Total 1800 signatures of 45 users with 20 genuine and 20 forged signatures of each user were considered.
- Six important features extracted: p, v_x , v_y , v, az, al
- For training
 - 1350 signatures (15 genuine and 15 forged signatures of each user) were used.
 - A total of 1350 (6×5 for each user) networks with 5 input layer neurons, 3 hidden layer neurons and 2 output layer neurons (in each network) were trained.
- For testing
 - A set of 45 pairs of genuine-genuine were formed by selecting two genuine signatures of each person.
 - Another set of 45 pairs of genuine-forged signatures were formed by randomly selecting one genuine and one forged signature.
- □ 160-bits secret S: 128-bit secret + 32 bits of CRC
- □ Degree of polynomial over $GF(2^{32})$: 4
- □ 17.78% FRR and 2.22% FAR was obtained.

CONCLUSION

- □ Important features based on the consistency in the genuine signature and inconsistency in the forged signature were extracted
- Weighted back propagation algorithm is developed for training the network
- AdaBoost algorithm is used for combining the decision of the networks
- □ 17.78% FRR and 2.22% FAR was obtained.
- □ This scheme works well for all kinds of signatures without any constraint on the number of high curvature points and zero crossing points

REFERENCES

- [1] A. Juels and M. Sudan, "A Fuzzy Vault Scheme," *Proceedings of IEEE International Symposium on Information Theory*, p. 408, 2002.
- [2] U. Uludag, S. Pankanti, and A. K. Jain, "Fuzzy Vault for fingerprints," *Audio-and Video-Based Biometric Person Authentication. Springer Berlin Heidelberg*, pp. 310-319, 2005.
- [3] A. Kholmatov and B. Yanikoglu, "Biometric cryptosystem using online signatures," *Computer and Information Sciences–ISCIS, Springer Berlin Heidelber,* pp. 981-990, 2006.
- [4] H. Feng and C. C. Wah, "Online signature verification using a new extreme points warping technique," *Pattern Recognition Letters*, vol. 24.16., pp. 2943-2951, 2003.
- [5] K. Huang and H. Yan, "Stability and style-variation modeling for on-line signature verification," *Pattern Recognition*, vol. 36, pp. 2253 2270, 2003.
- [6] H. Lei, S. Palla, and V. Govindaraju, "ER2: an Intuitive Similarity Measure for On-line Signature Verification," in 9th Int'l Workshop on Frontiers in Handwriting Recognition (IWFHR-9 2004), 2004, pp. 191-195.
- [7] J. Fierrez, J. Ortega-Garcia, D. Ramos, and J. Gonzalez-Rodriguez, "HMM-Based On-Line Signature Verification: Feature Extraction and Signature Modeling," *Pattern Recognition Letters*, vol. 28 (16), pp. 2325-2334, 2007.
- [8] B. L. Van, S. Garcia-Salicetti, and B. Dorizzi, "On Using the Viterbi Path Along With HMM Likelihood Information for Online Signature Verification," *IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS*, pp. 1237-1247 2007.
- [9] C. Gruber, T. Gruber, S. Krinninger, and B. Sick, "Online Signature Verification With Support Vector Machines Based on LCSS Kernel Functions," *IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS*, vol. 40 (4), 2010.
- [10] A. Nagar and S. Chaudhury, "Biometrics based Asymmetric Cryptosystem Design using Modified Fuzzy Vault Scheme," *Proceedings of IEEE International Conference Pattern Recognition, Hong Kong, China*, vol. 4, pp. 537-540, August 2006.
- [11] Online signature database SVC 2004. Available: http://www.cse.ust.hk/svc2004/download.html

Thank You