

14th INTERNATIONAL CONFERENCE ON FRONTIERS IN HANDWRITING RECOGNITION 1-4 September I-4 September CFHR 2014 Crete Island-Greece

HANDWRITTEN/PRINTED TEXT SEPARATION USING PSEUDO-LINES FOR CONTEXTUAL RE-LABELING

By:

Ahmad Montaser Awal Abdel Belaïd Vincent Poulain d'Andecy

CONTEXT

- Administrative documents are
 - Noisy
 - Annotated...
- Separation of scripts in administrative documents
 - Annotation extraction
 - Sending each script to a specialized system
 - Noise removal

CONTEXT

STATE OF THE ART

- Printed/handwritten text separation systems share the main steps
 - Preprocessing Removing very small/large connected components
 - Document segmentation
 - Segment the document into basic units
 - Classification

Assign each unit to a text class

• Contextual re-labeling

Correct classification errors using neighborhood information

STATE OF THE ART DOCUMENT SEGMENTATION

- Text line level (Pal et al. 2001)(Kavallieratou et al. 2004)
 - Lines are assumed to be homogeneous (mono-class)
 - Segmentation using the horizontal projection profiles
- Word level
 - Grouping connected components to approximate words
 - Distance based (Zheng et al. 2004) (Shetty et al. 2007)
 - Morphological operations (Peng et al. 2011) (Zagoris et al. 2014)
- Character level (Fan et al. 1998)
 - Non-cursive scripts (Chinese documents)
 - X-Y cut algorithm

STATE OF THE ART CONTEXTUAL RE-LABELING

• Step1: Define the neighborhood of a given word

- 4 Nearest Neigbors (Peng et al. 2013) (Zheng et al. 2007)
- 6 Nearest Neighbors (Shetty et al, 2007)
- Step2: Define criteria to re-label a word based on the labels of its neighborhood
 - Majority voting (kandan et al. 2007)
 - Probabilistic models
 - Markov Random Field (MRF) (Zheng et al. 2007) (Peng et al. 2013)
 - Conditional Random Field (CRF) (Shetty et al. 2007)

PROPOSED SYSTEM OVERVIEW

28/11/2014

ICHFR 2014

SEGMENTATION

• Differently from most of existing works, the document is first segmented into pseudo-lines before being segmented into pseudo-words

• Pseudo-line

- A set of connected components where:
 - Horizontal distances $< d_H$
 - Vertical distances $< d_V$

• Pseudo-word

- A set of connected components belonging to the same pseudo-line
- Horizontal distance < *ws* (word spacing distance estimated automatically for each pseudo-line)

IMPROVED SEGMENTATION – HEURISTIC

• Avoid vertical connection caused by handwritten annotations

• Use CCs horizontal overlapping

IMPROVED SEGMENTATION – HEURISTIC

PSEUDO-WORDS CLASSIFICATION

- A pseudo-word is characterized by 137 features
- A multiclass Support vector machines SVM is used to classify a pseudo-word into :
 - Handwritten text
 - Printed text
 - Noise

CONTEXTUAL RELABELING

- Some classification errors could be corrected using contextual neighborhood
- The label of each pseudo-word is updated based on those of its neighbors
- Local neighborhood
 - K nearest neighbors^{*}
 - Confidence propagation *
 - Conditional Random Fields
- Using pseudo-lines
 - Probabilistic model (CRF)
 - Static model

* A. Belaïd, K. Santoch and V. Poulain d'Andecy, "Handwritten and Printed Text Separation in Real Document," *Machine Vision Applications*, vol. 2, 2013

28/11/2014

ICHFR 2014

CONDITIONAL RANDOM FIELDS (CRF)

The separation problem can be modeled by CRF
According to (Nicolas et al. 2007), the probability of a pseudo-word *w* is given by:

- Contextual features
 - Local classification probabilities of left/right neighbors
 - Structural features extracted from the pseudo-word and each neighbor
 - Height ratio
 - Position ratios
 - Density ratio

RE-LABELING USING PSEUDO-LINES

- Ideally, a pseudo-line represents a text line of the document
- More than 90% of pseudo-lines contain one type of text (printed or handwritten)
- Pseudo-lines define, implicitly, a global horizontal neighborhood relation between the pseudo-words

RE-LABELING USING PSEUDO-LINES

- The *dominant class* C_D in a pseudo-line is the class with the highest cardinality
- In case of equality of cardinalities, the dominant class is the one with highest average confidence of its pseudo-words
- The label of a pseudo-word is updated:
 - Using a CRF model
 - If it verifies the following condition:

 $(f_i < cf) \lor (/h_i - h_D / < d)$

Classification Confidence

Certainty factor

Regularity factor

RE-LABELING USING PSEUDO-LINES EXAMPLES

EXPERIMNTATION

• Evaluation

- Pixel level $pixRate = \frac{pixels correctly recognised}{total number of pixels}$
- Pseudo-word level $pwRate = \frac{pseudo-words correctly recognized}{total number of pseudo-words}$

• Documents

- Training DB
 - 107 documents (32706 pseudo-words)
 - H: 5888; P: 18078; N: 8740

• Test DB

- 202 documents (82142 pseudo-words)
 - H: 11970; P: 43705; N: 25190
- All documents are labeled at the pixel level

RESULTS (1/2)

	System	H%	P%	N%
Previously proposed system*	Proposed system without contextual re- labeling	97.7	96.5	94.3
	k-NN	95.5	97.5	92.3
	Confidence propagation	97.8	96.6	94.0
New relabeling methods	CRF	98.5	97.1	94.2
	Pseudo-lines (CRF): Probabilistic	98.9	97.5	93.5
	Pseudo-lines: Deterministic	98.3	99.2	87.9
Improved segmentation	Pseudo-lines: Deterministic	99.1	99.2	90.1

*A. Belaïd, K. Santoch and V. Poulain d'Andecy, "Handwritten and Printed Text Separation in Real Document," *Machine Vision Applications*, vol. 2, 2013

28/11/2014

A.M.AWAL, A. Belaïd and V.P.d'Andecy

Results (2/2)

		pwRate			pixRate			
System	Docs	H%	Р%	ALL%	H%	Р%	N%	ALL%
[kandan et al. 2007]	150	-	-	93.2	-	-	-	-
[Zheng et al. 2004]	94	93.0	98,0	98.1	-	-	-	-
[Peng et al. 2013]	82	93.8	95,7	95.5	-	-	-	-
[Shetty et al. 2007]	27	-	-	-	94.8	98.4	89.8	95.7
[Hamrouni et al. 2014]	32	-	-	-	80.0	92.8	-	90.1
Proposed system	202	97.3	99.5	98.7	99.1	99.2	90.1	96.8

19

28/11/2014

CONCLUSION AND PERSPECTIVES

- Distance based segmentation is not always enough to obtain 'good' pseudo-words
 - Heuristics could improve and solve some segmentation problems
- A better performance using pseudo-line based contextual relabeling
- A very good performance compared to the state of the art systems
- In future work:
 - Feature selection
 - Ambiguity layer

ICHFR 2014