TRAINING ON-LINE HANDWRITING RECOGNIZERS USING SYNTHETICALLY GENERATED TEXT

<u>Daniel Martín-Albo[†], Réjean Plamondon^{*} and Enrique Vidal[†]</u>

[†] PRHLT Research Center Universitat Politècnica de València ^{*} Laboratoire Scribens École Polytechnique de Montréal

Motivation

- On-line handwriting recognition systems are very common nowadays.
- Good results can be achieved in writer-independent systems, but performance degrades if the user writing style is different from training.
- Possible solution: writer adaptation. Tune writer-independent models using writer-specific data.
- Trade-off: Amount of new training data requested versus performance.
- Proposal: Generate synthetic human-like handwritten words from real samples using the Kinematic Theory of rapid human movements.

Kinematic Theory (**S**-Lognormal)

- The Kinematic Theory can be used to analyze rapid human movements.
- Relies on lognormals for describing the velocity response of a neuromuscular network.
- The goal is to decompose a complex movement into a sequence of simpler strokes:

$$\vec{v}(t) = \sum_{i=1}^{N} D_i \begin{bmatrix} \cos\left(\phi_i(t)\right) \\ \sin\left(\phi_i(t)\right) \end{bmatrix} \Lambda_i(t; t_{0_i}, \mu_i, \sigma_i^2)$$

• Each stroke is described by six parameters:

$$p_i = (D_i, t_{0_i}, \mu_i, \sigma_i, \theta_{s_i}, \theta_{e_i})$$

Generation of Synthetic Samples

- \bullet Relationship between the fluctuations of the Σ -lognormal parameters and the handwritten variability.
- The synthetic generation algorithm presents three different stages:
 - 1. Extraction of Σ -lognormal parameters.
 - 2. Add noise (n) to the Σ -lognormal parameters.

$$n = [0, 0, n_{\mu}, n_{\sigma}, 0, 0] \qquad \qquad n_{\mu} \in \mathcal{U}(-0.15 \, \mu, 0.15 \, \mu) \\ n_{\sigma} \in \mathcal{U}(-0.15 \, \sigma, 0.15 \, \sigma)$$

3. Recalculate the velocity profile and recover (x, y).

$$x(t) = \int_0^t v_x(\tau) d\tau \qquad \qquad y(t) = \int_0^t v_y(\tau) d\tau$$

S-Lognormal Parameter Extraction

- We used the Robust Xzero [1] based algorithm to estimate the Σ -lognormal parameters.
- The quality of the calculated parameters is expressed using the signalto-noise ratio (SNR).

SNR = 10 log
$$(\frac{\int v_{x_n}^2 + v_{y_n}^2 dt}{\int (v_{x_n} - v_{x_{\Sigma}})^2 + (v_{y_n} - v_{y_{\Sigma}})^2 dt})$$

[1] C. O'Reilly and R. Plamondon, "Development of a Sigma-lognormal representation for on-line signatures", Pattern Recognition, vol. 42, no. 12, pp. 3324 – 3337, 2009, new Frontiers in Handwriting Recognition.

Some Synthetic Samples

Solid: Original Sample Dashed: Synthetic Sample

Some Synthetic Samples (II)

Solid: Original Sample Dashed: Synthetic Sample

Experiments

- 1. Assess the quality of the reconstruction using the Robust Xzero algorithm.
- 2. Study the impact of increasing the training dataset with
 - a varying number of real writer-specific samples
 - and a varying number of synthetic samples.

Experimental Setup

- Unipen-ICROW-03 database has been used in the experiments.
 - Composed of 13,119 isolated words from 72 people.
 - 10,496 words from 56 writers were selected as training set (**trn**).
 - From the remaining writers, 70% of their words were randomly chosen as test set (**tst**) leaving 30% as adaptation set (**adp**).
- 7 features representing pen positions, writing-speeds and curvature.
- Closed 1-gram word language model consisting of 884 unique lexical words.
- We evaluate the results by means of the Recognition Error Rate (% RER).

Validation of the Reconstruction

- Determine whether the technique provides a correct reconstruction for handwritten recognition purposes.
- Recognize the words contained in **tst** using **trn** as training
 - a) employing the original samples. (10.3% RER)
 - b) replacing each word by its reconstruction. (12.6% RER)

Validation of the Reconstruction (II)

SNR histogram for the reconstructed words of **tst** & **trn**

Impact of Synthetic Samples

- For each writer, recognize his words on **tst** using **trn** as training and
 - a varying number of real words (w) picked from his words in ${\bf adp}$
 - and a varying number of synthesized (or replicated) words (s) created from the previously chosen.

 $w \in \{20, 35, 50\} \qquad \qquad s \in \{10, 20, 50, 150, 200, 250\}$

Impact of Synthetic Samples (II)

		# replicated or synthetic samples (s)					
_		10	20	50	100	150	200
<pre># writer-specific samples (w)</pre>	20	11.7	11.4	10.2	9.5	9.5	8.9
	35	10.8	10.2	9.4	8.2	8.2	8.6
	50	10.4	9.8	8.7	8.1	8.5	8.5
	20	11.0	10.4	9.5	8.9	8.5	8.4
	35	9.9	9.1	7.9	7.0	6.6	6.4
	50	9.6	8.8	7.6	7.0	6.9	6.9

Test set Recognition Error Rate (%)

Top: Using only real replicated adaptation samples. Bottom: Using both real and synthetic adaptation samples.

Summary

- A method for the generation of synthetic on-line samples has been evaluated on handwritten words.
- \bullet The distortion of the Σ -lognormal parameters introduces realistic variability.
- Only a small number of real writer-specific samples are needed.
- The use of synthetic samples allows to improve the performance of a writer-specific system.

Future Work

• Compare with different writer adaptation techniques.

• Test with more corpora.

• ...