

Handwritten Character Recognition by Alternately Trained Relaxation Convolutional Neural Network

Chunpeng Wu, Wei Fan, Yuan He, Jun Sun, Satoshi Naoi Fujitsu R&D Center, Co., Ltd.

Sep 1st, 2014

Outline

- Introduction to Convolutional Neural Network (CNN)
- Proposed Method
 - R-CNN: Relaxation CNN
 - ATR-CNN: Alternately Trained R-CNN
- Experiments
 - Handwriting Digits MNIST
 - Handwriting Chinese ICDAR'13 Competition Dataset

Conclusions

Introduction

- Traditional Handwriting Recognition Methods
 - Handcrafted features + Classifiers

- Recent Deep Convolutional Neural Networks (CNN)
 - Learned features + Classifiers

Convolution Spatial-Pooling Convolution Spatial-Pooling ...

Introduction

- High performance computing (GPUs)
- Flexible structure of neural networks
- Availability of larger datasets
- Effective learning algorithms

Challenges of CNN Based Methods

- Slow convergence
 - <u>CNN structure</u> vs <u>the scale of training dataset</u>
- Over-fitting
 - Typical stochastic regularizing techniques
 - Dropout
 - Drop-connect
 - Make spatial-pooling a stochastic process

- R-CNN: Relaxation CNN
 - Neurons within a feature map do not share the same kernel
 - Endow CNN with more expressive power
- ATR-CNN: Alternately Trained R-CNN
 - **Randomly stop** one layer from learning at one epoch
 - Regularize R-CNN

R-CNN

Enhance the learning ability of CNN

 $W_1 = W_2$

CNN:

Neurons n_1 and n_2 share the *same* weight matrix W_1 (or W_2)

R-CNN:

Neurons n_1 and n_2 use different weight matrices W_1 and W_2

ATR-CNN

- Randomly fix a learning rate to zero at one epoch
- Regularization

FUITSU

Experiments – Handwriting Digits

MNIST (Training: 60000 Testing: 10000)

Our ATR-CNN

In-32Conv5-32MaxP2-64Conv3-64MaxP2-64RX3-64RX3-Out

NVIDIA GTX 690, 64GB RAM

Method	Model	Error Rate (%)	
Lecun et al. [33]	Boosted Letnet-4	0.70	
Mizukami et al [2]	KNN	0.57	
Lauer et al. [3]	TFE-SVM	0.54	
Keysers et al. [1]	KNN	0.52	
Simard et al. [31]	CNN	0.40	
Wan et al. [11]	CNN+DropConnect	0.280 ± 0.032	
Hinton et al. [18]	CNN+DropOut	0.280 ± 0.016	
Our Method	R-CNN	0.274 ± 0.021	
Our Method	ATR-CNN	$0.254{\pm}0.014$	

Experiments – Handwriting Digits

MNIST

Misclassified samples (ground-truth -> prediction)

Experiments – Handwriting Chinese

Testing Set

ICDAR'13 Competition Dataset (224,419 samples, 3755 classes)

Our ATR-CNN

In-64Conv5-64MaxP2-128Conv3-128MaxP2-128RX3-128MaxP2-256RX3-256Full1-Out

Narrow the gap between machine and human

Method	Training Set	Error Rate (%)	
THU [6]	CASIA-HWDB 1.0-1.1, 2.0-2.2	7.44	
HIT [7]	CASIA-HWDB 1.0-1.1	7.38	
Liu et al. [5]	CASIA-HWDB 1.0-1.1	7.28	
Our ICDAR'13 [12]	CASIA-HWDB 1.1	5.23	
MCDNN [22]	CASIA-HWDB 1.1	5.53	
MCDNNs Voting [22]	CASIA-HWDB 1.1	4.35	
R-CNN	CASIA-HWDB 1.1	5.32 ± 0.09	
R-CNNs Voting	CASIA-HWDB 1.1	4.45	
ATR-CNN	CASIA-HWDB 1.1	4.96 ± 0.08	
ATR-CNNs Voting	CASIA-HWDB 1.1	3.94	
Human [12]	-	3.87	

Experiments – Handwriting Chinese

Misclassified Samples

- Top 10 errors
- Ground-truth -> Prediction

Difficulties

- Cursive writing
- Touching strokes
- Confusion in shapes

Error	Examples						
话→活	it	ìt	访	iA	行	Ĥ	
⊟→日	Ð	E	D	13	A	9	
晴→睛	腯	陆	時	0库	口考	同裔	
扶→快	扶	扶	扶	扶	12	扶	
己→己	3	Ē	Z	E	P	2	
束→柬	束	季	宋	来	柬	束	
淳→谆	淳	落	inter	淳	学	ind	
白→自	12	4	Ð	白	P	百	
涌→诵	词	词	涌	涌	通	涌	
请→清	涛	清	清	言書	清	清	

Experiments – Handwriting Chinese

Contributions

- Relaxation (Blue curve), Alternate Training (Red curve)
- Both contribute to the improvement of recognition accuracy

Conclusions

- Neurons within a feature map do not share the same kernel
- Endow CNN with more expressive power

ATR-CNN

Randomly stop one layer from learning at one epoch
Regularize R-CNN

Experiments

Both contribute to the improvement of recognition accuracy

Questions?

FUJTSU

shaping tomorrow with you