Learning and Vision Group, NUS (NUS-LV)

Deep Learning and Biometrics

Shuicheng YAN eleyans@nus.edu.sg National University of Singapore

[Special thanks to Min LIN, Qiang CHEN, Luoqi LIU, Xiaodan LIANG, Si LIU, Xiaobo SHU, and Zhiheng NIU]

Learning and Vision Research Group (LV)

- Founded early 2008, frequently 20-30 members
- Focus on multimedia, computer vision and machine learning

Interests on Hard/Soft Biometrics in NUS-LV

I. Biometrics without Deep Learning

(Beautification/De-aging vs. Aging)

Task I: Face Beautification/De-aging

(Beauty e-Experts)

System Flowchart

Recommendation Module

Beauty Attributes

Totally, we define 9 kinds of beauty attributes(directly related with real cosmetic products).

Beauty-related Attributes

Visual Features

Color Histograms

Color Moments

Histogram of Gradients

Binary:11010011 Decimal:211

Local Binary Patterns

ASM Parameters

Exemplar Synthesis Process

Recommendation and Synthesis Results

Recommendation and Synthesis Results

Task II: Face Aging Progression

(Personalized Aging)

Personalized Age Progression

- Aim to render aging faces in a personalized way
- Personalized aging face contains the aging layer (e.g. wrinkles) and the personalized layer (e.g. mole, unchanged)

Aging Dictionary Learning with Neighbor-group Pairs

Couple-aware aging dictionary learning

$$\min_{\mathbf{D},\mathbf{A},\mathbf{P}} \sum_{g=1}^{G-1} \left\{ \|\mathbf{X}^{g} - \mathbf{H}^{g}\mathbf{D}^{g}\mathbf{A}^{g} - \mathbf{P}^{g}\|_{F}^{2} + \gamma \|\mathbf{P}^{g}\|_{F}^{2} \\ + \|\mathbf{Y}^{g} - \mathbf{H}^{g+1}\mathbf{D}^{g+1}\mathbf{A}^{g} - \mathbf{P}^{g}\|_{F}^{2} + \lambda \|\mathbf{A}^{g}\|_{1} \right\}$$
s.t.
$$\|\mathbf{D}^{g}(:,d)\|_{2} \leq 1, \forall d \in \{1,\cdots,k\}, \forall g \in \{1,\cdots,G\}$$

Bi-level aging dictionary learning

$$\min_{\mathbf{D}^{g},\mathbf{D}^{g+1}} \|\mathbf{X}^{g} - \mathbf{H}^{g}\mathbf{D}^{g}\mathbf{A}^{g} - \mathbf{P}^{g}\|_{F}^{2} + \|\mathbf{Y}^{g} - \mathbf{H}^{g+1}\mathbf{D}^{g+1}\mathbf{A}^{g} - \mathbf{P}^{g}\|_{F}^{2}$$
s.t. $\mathbf{A}^{g} = \arg\min_{\mathbf{Z}^{g}} \|\mathbf{X}^{g} - \mathbf{H}^{g}\mathbf{D}^{g}\mathbf{Z}^{g} - \mathbf{P}^{g}\|_{F}^{2} + \lambda_{1}\|\mathbf{Z}^{g}\|_{1} + \lambda_{2}\|\mathbf{Z}^{g}\|_{F}^{2}$

$$\mathbf{P}^{g} = \arg\min_{\mathbf{Q}^{g}} \|\mathbf{X}^{g} - \mathbf{H}^{g}\mathbf{D}^{g}\mathbf{A}^{g} - \mathbf{Q}^{g}\|_{F}^{2} + \gamma \|\mathbf{Q}^{g}\|_{1}$$

$$\|\mathbf{D}^{c}(:,l)\|_{2} \leq 1, \ l = 1, ..., k, \ and \ c = \{g, g+1\}.$$

Aging Results

Aging Results

Comparison with Ground Truth

- FT Demo: <u>http://cherry.dcs.aber.ac.uk/Transformer/kinship-aging</u>
- IAAP: I. Kemelmacher-Shlizerman, S. Suwajanakorn, and S. M. Seitz. Illumination-aware age progression. In CVPR, 2014.

Cross-Age Face Verification by Aging Synthesis

Face verification with a system with 99.70% accuracy on LFW

- --- Our Synthetic Pairs use our aging synthesis method
- ---- IAAP Synthetic Pairs use our IAAP method
- --- "I" and "II" denote using actual age and estimated age, experiments on FG-NET.

Pair settings

EER (%)

II. Biometrics with Deep Learning

Deep Learning Ecosystem in NUS-LV Lab

Purine:

General, bi-graph based DL framework Multi-PC Multi-CPU/GPU Linear speedup High re-usability

Brain-like + Baby-like:

Brain-like network structures and baby-like self/endless learning process

Architecture

- 1. 4 winner awards in VOC
- 2. One 2nd prize in VOC
- 3. 2nd prize in ImageNet'13
- 4. 1st prize in ImageNet'14

Best paper/demo awards: ACM MM13, ACM MM12, Also licensed to ****** LFW: 99.70%, among best two Best human parsing performance Cross-age synthesis Face analysis with occlusions Big Data Analytics: Intelligent Recommendation Inventory Planning Assistive driving

Task I: Face Recognition

(Network-in-Network)

"Network in Network" (NIN)

NIN: more brain-like || complex-cell filters, pure convolutional Multilayer Perceptron Convolution **Global Average Pooling** NIN Feed to Softmax # feature maps = # classes ally, and more discriminative locally nt 10 Cifar-100 Linear convolution MLP convolution 38.57% -----Can be any small networks, e.g. MLP, Inception module, batch-normalization, or others for other particular targets, but % 36.30% **SMALL** With less parameter #

[4] Ian J. Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron C. Courville, Yoshua Bengio: Maxout Networks. ICML (3) 2013: 1319-1327

Lin, Min, Qiang Chen, and Shuicheng Yan. "Network In Network." ICLR-2014.

Much Smaller Model

Save tons of parameters

GoogLeNet = Deeper Network-in-Network

Face Recognition with Deeper NINs

- Deeper NINs trained over 494k images of 10k subjects [from Prof. Stan Li's group], followed by binary classifier
- Current accuracy on LFW is 99.70% (said to the reasonable upper-bound)

Organization	Accuracy
Baidu	99.62%->99.82%
Face++	99.50%
СИНК	99.47%
Facebook	98.37%

A Face Recognition Story

Her son said they are Mummy and Daddy! Cross-border officers often challenged her!

? Same Person ?

Our system answers "**Yes**", Distance = 8 < Threshold = 200

Task 2: Human Parsing

(Fully-convolutional Network)

Task: Human Parsing

- Decompose a human photo into semantic fashion/body items
- Pixel-level semantic labeling

Human Parsing = Engine for Applications

State-of-the-art Related Solutions

Hand-designed pipelines

--- Heavily rely on the performance of individual component

--- Founded on hand-designed features and complex context models

[1] Jian Dong, Qiang Chen, Wei Xia, ZhongYang Huang, and Shuicheng Yan. A deformable mixture parsing model with parselets. In ICCV, 2013
[2] K. Yamaguchi, M.H. Kiapour, and T.L. Berg. Paper doll parsing: Retrieving similar styles to parse clothing items. In ICCV, 2013

Motivation

Deformable Human Items Model (similar to ASM): predict the **normalized item masks**, and their **active shape/location parameters** with two CNN networks

Normalized Item Mask

- The masks of different items often appear in various specific shapes
- The mask can be approximated as a linear combination of the learned templates

Our Framework

- Active Template Network for predicting item template coefficients
- Active Shape Network for predicting active shape/location parameters
- Combine the resulting structure outputs and then refine the parsing result

Active Template Network

- Learn 50 templates for each item by Non-negative Matrix Factorization (NMF) in an offline way
- Regress the output: 50*17 for 17 human items

Active Shape Network

- Predict x,y coordinates, width, height, visibility flag for each item
- Eliminate the max-pooling layer in CNN to keep the position sensitiveness

	Accuracy	Foreground accuracy	Average precision	Average recall	Average F-1 scores
Original Structure	90.21	67.17	69.16	56.04	60.77
Ours	91.01	70.40	69.61	58.82	62.78

Structure Output Combination

 Combine the structure outputs from two networks, and generate 17 confidence maps of the human items

Optional bounding-box refinement and super-pixel smoothening

Results

Datasets: 7,700 images, 6,000 for training, 1,000 for testing and 700 for validation

- Training: Manually decrease the learning rate according to the validation error
- Training time: for 120 epochs, take 2-3 days on two NVIDIA GTX TITAN 6GB GPUs
- Testing time: process one image within about 0.5 second

Comparison of parsing performances with two state-of-the-art methods:

	Accuracy	Foreground accuracy	Average precision	Average recall	Average F-1 scores
Yamaguchi [3]	84.38	55.59	37.54	51.05	41.80
Paper-doll [2]	88.96	62.18	52.75	49.43	44.76
ATR(noSPR)	89.33	64.79	63.75	56.19	59.60
ATR	91.01	70.40	69.16	58.82	62.78
ATR + BBox Regression	91.11	71.04	71.69	60.25	64.38

[2] K. Yamaguchi, M.H. Kiapour, and T.L. Berg. Paper doll parsing: Retrieving similar styles to parse clothing items. In ICCV, 2013

[3] K. Yamaguchi, M.H. Kiapour, L.E. Ortiz, and T.L. Berg. Parsing clothing in fashion photographs. In CVPR 2012.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Parsing Results

Parsing Results

Limitations

- Two separate networks lead to sub-optimal results
- Results are still with many artifacts
- Super-pixel smoothing are performed as post-processing step

Human Parsing with Contextualized Convolutional Neural Network

Motivations

- Integrate multi-source contexts into a fully convolutional network
- ✓ Cross-layer context:
 - : multi-level feature fusion
- ✓ Global image-level context:
 - : coherence between pixel-wise labelling and image label prediction
- ✓ Local Super-pixel context:
 - : local boundaries and label consistency among similar neighbouring super-pixels

Cross-layer context

Four feature map fusions

Global image-level context

Incorporate global image label prediction

Local Super-pixel context

Integrate within-super-pixel smoothing and cross-super-pixel neighbourhood voting

Global image-level context helps distinguish the ambiguous labels

 Local super-pixel context retains the local boundaries and appearance consistency

Comparison of parsing performances with four state-of-the-art methods on ATR dataset:

	Accuracy	Foreground accuracy	Average precision	Average recall	Average F-1 scores
Yamaguchi et ak.	84.38	55.59	37.54	51.05	41.80
Paperdoll	88.96	62.18	52.75	49.43	44.76
M-CNN	89.57	73.98	64.56	65.17	62.81
ATR	91.11	71.04	71.69	60.25	64.38
Co-CNN	95.23	80.90	81.55	74.42	76.95

Analyses on architectural variants of our model

	Method	Accuracy	F.g. accuracy	Avg. precision	Avg. recall	Avg. F-1 score
* Yan	naguchi et al. [28]	84.38	55.59	37.54	51.05	41.80
*	PaperDoll [27]	88.96	62.18	52.75	49.43	44.76
	M-CNN [18]	89.57	73.98	64.56	65.17	62.81
Cross-layer	* ATR [15]	91.11	71.04	71.69	60.25	64.38
context	eline (150-75)	92.77	68.66	67.98	62.85	63.88
base	line (150-75-37)	92.91	76.29	78.48	65.42	69.32
baseline (150-75-37-18)		94.41	78.54	76.62	71.24	72.72
★ baseline (15)	* baseline (150-75-37-18, post-process)		78.85	77.22	71.78	73.25
baseline (15	0-75-37-18, w/o fusion)	92.57	70.76	67.17	64.34	65.25
baseline (1	50-75-37-18, lessfilters)	94.23	77.79	75.66	70.42	71.82
baseline (150-75-37-18, concat)		93.10	72.17	69.63	66.94	67.82
Co-CNN (concatenate with global label)		94.90	80.80	78.35	73.14	74.56
Co-CNN (concatenate, summation with global label)		94.87	79.86	78.00	73.94	75.27
Co-CNN (w-s-p)		95.09	80.50	79.22	74.38	76.17
C	Co-CNN (full)	95.23	80.90	81.55	74.42	76.95

Analyses on architectural variants of our model

	Method	Accuracy	F.g. accuracy	Avg. precision	Avg. recall	Avg. F-1 score
-	★ Yamaguchi et al. [28]	84.38	55.59	37.54	51.05	41.80
	* PaperDoll [27]	88.96	62.18	52.75	49.43	44.76
	*M-CNN [18]	89.57	73.98	64.56	65.17	62.81
	* ATR [15]	91.11	71.04	71.69	60.25	64.38
	baseline (150-75)	92.77	68.66	67.98	62.85	63.88
	baseline (150-75-37)	92.91	76.29	78.48	65.42	69.32
	baseline (150-75-37-18)	94.41	78.54	76.62	71.24	72.72
	(150-75-37-18, post-process)	94.48	78.85	77.22	71.78	73.25
Global image	(150-75-37-18, w/o fusion)	92.57	70.76	67.17	64.34	65.25
label context	(150-75-37-18, lessfilters)	94.23	77.79	75.66	70.42	71.82
Dase	mne (150-75-37-18, concat)	93.10	72.17	69.63	66.94	67.82
Co-CNN	(concatenate with global label)	94.90	80.80	78.35	73.14	74.56
Co-CNN (con	catenate, summation with global label)	94.87	79.86	78.00	73.94	75.27
	Co-CNN (w-s-p)		80.50	79.22	74.38	76.17
	Co-CNN (full)	95.23	80.90	81.55	74.42	76.95

Analyses on architectural variants of our model

Method		Accuracy	F.g. accuracy	Avg. precision	Avg. recall	Avg. F-1 score
* Yama	aguchi et al. [28]	84.38	55.59	37.54	51.05	41.80
* P:	aperDoll [27]	88.96	62.18	52.75	49.43	44.76
*N	A-CNN [18]	89.57	73.98	64.56	65.17	62.81
*	ATR [15]	91.11	71.04	71.69	60.25	64.38
base	eline (150-75)	92.77	68.66	67.98	62.85	63.88
baseli	ne (150-75-37)	92.91	76.29	78.48	65.42	69.32
baseline	e (150-75-37-18)	94.41	78.54	76.62	71.24	72.72
* baseline (150	* baseline (150-75-37-18, post-process)		78.85	77.22	71.78	73.25
baseline (150	-75-37-18, w/o fusion)	92.57	70.76	67.17	64.34	65.25
baseline (150	0-75-37-18, lessfilters)	94.23	77.79	75.66	70.42	71.82
Local super-pixel	0-75-37-18, concat)	93.10	72.17	69.63	66.94	67.82
context	tenate with global label)	94.90	80.80	78.35	73.14	74.56
, summation with global label)		94.87	79.86	78.00	73.94	75.27
Co-	Co-CNN (w-s-p)		80.50	79.22	74.38	76.17
Co	Co-CNN (full)		80.90	81.55	74.42	76.95

Results

Adding 10,000 human pictures from "chictopia.com"

	Accuracy	Foreground accuracy	Average precision	Average recall	Average F-1 scores
ATR	91.11	71.04	71.69	60.25	64.38
Co-CNN	95.23	80.90	81.55	74.42	76.95
Co-CNN(+Chictopia10k)	96.02	83.57	84.95	77.66	80.14

Parsing Results

Parsing Results

Online Human Parsing Engine (<0.15s)

Random Thoughts on Deep Learning for Biometrics

- Deep learning has shown great power for biometrics, so is the left issue "big data" or "new algorithm"?
- Industry is doing better than academia due to big data and computing resource, what should our academia focus?
 - Should we still focus on less-important research with small dataset or collaborate with industry?
- But anyway, good thing is that, more jobs and funding are there for us.....

Email: eleyans@nus.edu.sg