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Representation of structured information as hypergraphs. S(H) = 0if and only if |E| = 1.

Entropy measures. S(H) = logy(n) — logy(r(H)) = logy(m), where r(H) = = (rank of
H), if and only if H is uniform (i.e. Ve € E, |e|] = r(H)) and the

intersection of any two distinct hyperedges is empty (i.e. for all e, €’
graphs. in F such thate # €/, [ene’| =0).

= Entropy vector: entropy values of all partial hypergraphs.

Fine grained analysis of the structure and complexity of hyper-

Two isomorphic hypergraphs have the same entropy vectors.

Lattice structures:

Hypergraph H = (V. E = {e;,i = 1...m,e; CV}), |V| =n,|E| =m. . cojln 7—[ (isomorphim classes of hypergraphg) for the partial or-
ering defined by the subhypergraph relation <y,
Incidence matrix I, L(H) = I(H)I(H)" = ((le; N ejl))ije1...m?- — on SEy = {SE(H) | H € H} for Pareto partial ordering on

Normalized eigenvalues of L(H): p;,i = 1...m. vectors.

m / /

Entropy S(H) = — ) _._; pilogs (). H' <y H= SE(H') < SE(H).
Partial hypergraph H' = (V',{e;,7 € J}),J C {l..m}, Ujeje; C
V' CV (here V' = V). Notation: H' < H.

Reducing the complexity (|SE(H)| = 2™ — 1)

— by discarding two small or two large partial hypergraphs;

For i+ < m: — by approximating the computation of entropy;

SE,(H)={S(H;) | H;, = (V,E,). H; < H.|E;| =1 — by considering only the leading principal matrices (m — 1 in-
=S Vo ), By < H, [ = 1) stead of 2™ — 1) after sorting the hyperedges by increasing car-

= set of entropy values of all partial hypergraphs of H whose set of hy- dinality.
peredges has cardinality ¢, arranged in increasing order.
Entropy vector of the hypergraph H:

SE(H) = (SEW(H),SEx(H),...SEnw(H)) Cr(s) = Tr(L(H)™)
with 2™ — 1 coordinates. i=1,1;7#0

L(H
where L(H) = Tr(é(lzr)y

e Relation between entropy and Zeta function:
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First results:
Cor(=1) = In(2)S(H), Co(0) = —In(det(L(H))), C(—s) = (1= Rs ()

where Rs(H) = - In(}_.", 1) (Renyi entropy).

e [llustrations and examples.

o SI/: three partial hypergraphs containing one hyperedge (e1, e
and es, respectivly).
SE; = (0,0,0)

o S[: three partial hypergraphs containing two hyperedges.
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(e1,€2): L = ( 0 9 ), eigenvalues = 2 and 3, s; = —%10g2 2 —

% log,, % ~ (0.97.

(€1, €3): same reasoning.

(€2,€3): L = ( ? ; ), eigenvalues = 1 and 3, s, = —;log, 3+ —
2 log, 2 ~ 0.81.

SFy = (s9,51,81) ~ (0.81,0.97, 0.97)

(0,0,0,0.42,0.50,0.85,0.83)  (0,0,0,0.63,0.74,0.75,1.11)

e S[s: one partial hypergraph containing three hyperedges, i.e. H.

3 0 0
L = 0 2 1 ], eigenvalues =1, 3 and 3, s3 = _% IOgZ% — | | Bai, L., Escolano, F., Hancock, E.R.: Depth-based hypergraph complexity traces
0 1 2 from directed line graphs. PR (2016).
2% log, % ~ 1.45. Berge, C.: Hypergraphs. Elsevier Science Publisher (1989).
SE3 = (s3) ~ (1.45) Bloch, I., Bretto, A.: Mathematical morphology on hypergraphs, application to

. . similarity and positive kernel. CVIU (2013).
* Entropy vector: Bretto, A.: Hypergraph Theory: an Introduction. Springer-Verlag (2013).

Shannon, C.E.: A mathematical theory of communication. Bell System Technical

SE(H) = (0,0,0, s, 51,51, 53) ~ (0,0,0,0.81,0.97,0.97, 1.45) Jowrnal 27 (1948)



