A New Entropy for Hypergraphs

Isabelle Bloch¹, Alain Bretto²

1. LTCI, Télécom ParisTech, Université Paris Saclay, Paris, France 2. GREYC CNRS UMR 6072, NormandieUnicaen, Caen, France isabelle.bloch@telecom-paristech.fr, alain.bretto@unicaen.fr

Motivation

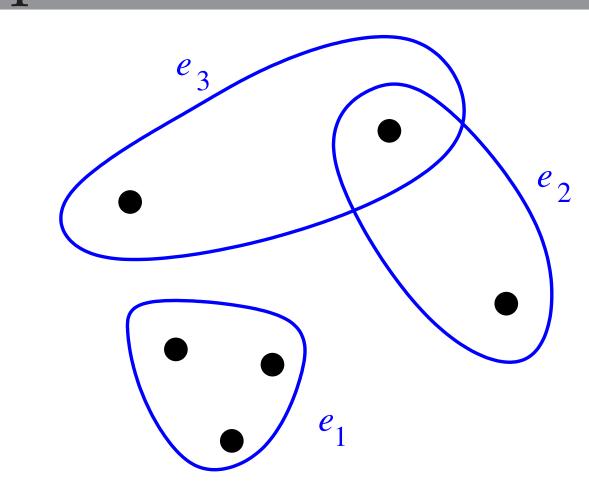
- Representation of structured information as hypergraphs.
- Entropy measures.
- Fine grained analysis of the structure and complexity of hypergraphs.
- \bullet \Rightarrow Entropy vector: entropy values of all partial hypergraphs.

Notations and background

- Hypergraph $H = (V, E = \{e_i, i = 1...m, e_i \subseteq V\}), |V| = n, |E| = m.$
- Incidence matrix $I, L(H) = I(H)I(H)^t = ((|e_i \cap e_j|))_{i,j \in \{1...m\}}$.
- Normalized eigenvalues of L(H): μ_i , i = 1...m.
- Entropy $S(H) = -\sum_{i=1}^{m} \mu_i \log_2(\mu_i)$.
- Partial hypergraph $H'=(V',\{e_j,j\in J\}), J\subseteq\{1...m\}, \cup_{j\in J}e_j\subseteq J\}$ $V' \subseteq V$ (here V' = V). Notation: $H' \leq H$.

Main definition: entropy vector

For $i \leq m$:


$$SE_i(H) = \{ S(H_i) \mid H_i = (V, E_i), H_i \le H, |E_i| = i \}$$

= set of entropy values of all partial hypergraphs of H whose set of hyperedges has cardinality i, arranged in increasing order. *Entropy vector* of the hypergraph *H*:

 $SE(H) = (SE_1(H), SE_2(H), \dots SE_m(H))$

with $2^m - 1$ coordinates.

A simple example

• SE_1 : three partial hypergraphs containing one hyperedge (e_1 , e_2 and e_3 , respectivly).

 $SE_1 = (0, 0, 0)$

• SE_2 : three partial hypergraphs containing two hyperedges.

$$(e_1, e_2)$$
: $L = \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}$, eigenvalues = 2 and 3, $s_1 = -\frac{2}{5} \log_2 \frac{2}{5} - \frac{3}{5} \log_2 \frac{3}{5} \simeq 0.97$. (e_1, e_3) : same reasoning. (e_2, e_3) : $L = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$, eigenvalues = 1 and 3, $s_2 = -\frac{1}{4} \log_2 \frac{1}{4} - \frac{1}{4} \log_2 \frac{1}{4} = \frac{1}{4} \log_2 \frac{1}{4}$

$$SE_2 = (s_2, s_1, s_1) \simeq (0.81, 0.97, 0.97)$$

• SE_3 : one partial hypergraph containing three hyperedges, i.e. H.

$$L = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}$$
, eigenvalues = 1, 3 and 3, $s_3 = -\frac{1}{7}\log_2\frac{1}{7} - 2\frac{3}{7}\log_2\frac{3}{7} \simeq 1.45$.

$$SE_3 = (s_3) \simeq (1.45)$$

• Entropy vector:

 $\frac{3}{4}\log_2\frac{3}{4} \simeq 0.81.$

 $SE(H) = (0, 0, 0, s_2, s_1, s_1, s_3) \simeq (0, 0, 0, 0.81, 0.97, 0.97, 1.45)$

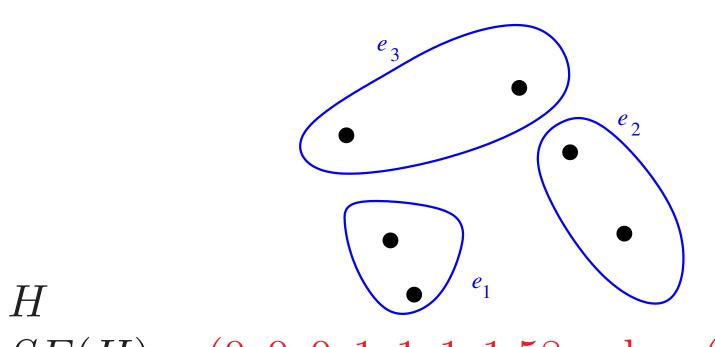
Some properties

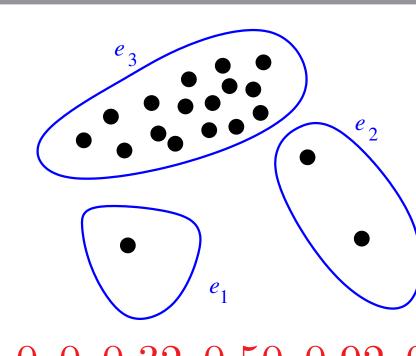
- S(H) = 0 if and only if |E| = 1.
- $S(H) = \log_2(n) \log_2(r(H)) = \log_2(m)$, where $r(H) = \frac{n}{m}$ (rank of H), if and only if H is uniform (i.e. $\forall e \in E, |e| = r(H)$) and the intersection of any two distinct hyperedges is empty (i.e. for all e, e'in E such that $e \neq e'$, $|e \cap e'| = 0$).
- Two isomorphic hypergraphs have the same entropy vectors.
- Lattice structures:
 - on \mathcal{H} (isomorphim classes of hypergraphs) for the partial ordering defined by the subhypergraph relation \leq_f ,
 - on $SE_{\mathcal{H}} = \{SE(H) \mid H \in \mathcal{H}\}$ for Pareto partial ordering on vectors.
- $H' \leq_f H \Rightarrow SE(H') \leq SE(H)$.

On going work

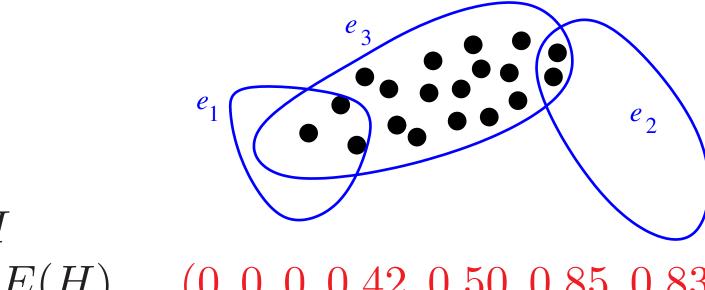
- Reducing the complexity $(|SE(H)| = 2^m 1)$
 - by discarding two small or two large partial hypergraphs;
 - by approximating the computation of entropy;
 - by considering only the leading principal matrices (m-1 instead of $2^m - 1$) after sorting the hyperedges by increasing cardinality.
- Relation between entropy and Zeta function:

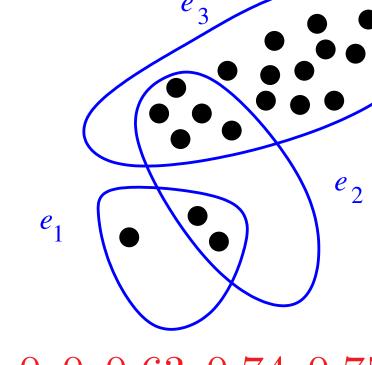
$$\zeta_H(s) = Tr(\mathcal{L}(H)^{-s}) = \sum_{i=1, \mu_i \neq 0}^{m} \mu_i^{-s}$$


where $\mathcal{L}(H) = \frac{L(H)}{Tr(L(H))}$.


First results:

 $\zeta'_{H}(-1) = \ln(2)S(H), \ \zeta'_{H}(0) = -\ln(\det(\mathcal{L}(H))), \ \zeta_{H}(-s) = e^{(1-s)R_{s}(H)}$ where $R_s(H) = \frac{1}{1-s} \ln(\sum_{i=1}^m \mu_i^s)$ (Renyi entropy).


• Illustrations and examples.


A few illustrations

 $(0,0,0,1,1,1,1.58 = \log_2(3))$ (0,0,0,0.32,0.50,0.92,0.77)SE(H)

SE(H)

(0,0,0,0.42,0.50,0.85,0.83) (0,0,0,0.63,0.74,0.75,1.11)

References

Bai, L., Escolano, F., Hancock, E.R.: Depth-based hypergraph complexity traces from directed line graphs. PR (2016).

Berge, C.: Hypergraphs. Elsevier Science Publisher (1989).

Bloch, I., Bretto, A.: Mathematical morphology on hypergraphs, application to similarity and positive kernel. CVIU (2013).

Bretto, A.: Hypergraph Theory: an Introduction. Springer-Verlag (2013).

Shannon, C.E.: A mathematical theory of communication. Bell System Technical Journal 27 (1948).