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delineation.
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The role of optimum connectivity

@ Semantic segmentation involves object detection and object
delineation.

@ Semantic segmentation models (e.g., deep neural
networks [25, 26]) have provided successful object detection
and identification.

@ However, object delineation cannot be solved by simply
thresholding some probability map derived from the network.

@ Indeed, the need for optimum connectivity in this context has
already been recognized [33].
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The role of optimum connectivity

Example of the problem when the scene contains objects of
different sizes and shapes [26].

Object categories: dinning table, broccoli, bowl, and person.
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The role of optimum connectivity

User input for effective object delineation cannot be usually
reduced to a single intervention [27].

Segmentation by deep extreme cut.
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The role of optimum connectivity

The problem is even more critical when objects with similar image
properties appear connected to each other.

Segmentation by deep extreme cut.
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The role of optimum connectivity

It is paramount that user intervention for correction be simple,
fast, and effective by quickly adapting the model or creating a new
one for the specific object of interest [7].

The object is an optimum-path forest rooted at its internal

markers.
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Research goals

Learn object information from each given image and the users’
actions during interactive segmentation with minimum user effort.

© Dynamic object modeling
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Research goals

Learn object information from each given image and the users’
actions during interactive segmentation with minimum user effort.

© Dynamic object modeling
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The object model may be active in its learning process, specific for
each given image, and generalized for new images when the
number of examples is high enough.




Research goals: shape models and optimum connectivity

One example of a generalized model is a multi-object statistical
atlas adaptive for anomalous MR-image segmentation [15].

The shape model is built from normal examples (images and
masks), but it can identify anomalous regions in test images.
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Research goals: shape models and optimum connectivity

The model estimates the markers and the objects are delineated by
optimum connectivity.

MR-image segmentation of the left and right brain hemispheres,
and the cerebellum without pons, medulla, and spinal cord.
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Research goals: optimum connectivity only

Marker estimation and object delineation can also be mostly based
on optimum connectivity in some cases [14].

CT-image segmentation of the left and right lungs, and
traquea-and-bronchi in anomalous images.

11/33



Research goals: optimum connectivity only

Marker estimation and object delineation can also be mostly based
on optimum connectivity in some cases [14].

CT-image segmentation of the left and right lungs, and
traquea-and-bronchi in anomalous images.

11/33



Research goals: fast segmentation correction

Finally, the segmentation result from any method can be converted
into an optimum-path forest rooted at computed markers [21, 22]
for fast interactive corrections in a differential way [12, 13].

CT-image segmentation of foot bones.
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Methodology adopted for the conference paper

We have used the Image Foresting Transform (IFT) for the design
of image operators based on optimum connectivity [5, 6].

Superpixel
Segmentation
l markers
Object Object Superpixel
Delineation Saliency 4—l Clustering

\

The block in red extracts object information prior
delineation [1, 10, 11].
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Image Foresting Transform (IFT)

@ Image elements t may be pixels, superpixels, or objects from
some image set, each represented by a feature vector (left).
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Image Foresting Transform (IFT)

@ Image elements t may be pixels, superpixels, or objects from
some image set, each represented by a feature vector (left).
@ An adjacency relation A transforms the set of image elements
into a graph in the image domain (or feature space) (center).
@ A connectivity function f assigns to any path m; with
terminus t a cost f(m;) and the minimization
V(t) = min {f(m)}
Vel

t

is solved by propagating paths in a non-decreasing order of
costs, leading to an optimum-path forest rooted at the
minima of the cost map V (right).
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Superpixel segmentation

Superpixels (supervoxels in 3D) can be defined by combining
parametric and geometric image properties to balance boundary
adherence and shape regularity [2].

Each superpixel is one optimum-path tree rooted at a
representative seed pixel.
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Superpixel segmentation

The method is called Iterative Spanning Forest (ISF) [2].

Seed IFT Seed
Estimation Recomputation

@ Initial seed estimation is important to locate relevant
segments, while seed recomputation improves delineation.
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Superpixel segmentation

The method is called Iterative Spanning Forest (ISF) [2].

Seed > IFT > Seed
Estimation Recomputation

@ Initial seed estimation is important to locate relevant
segments, while seed recomputation improves delineation.

@ Object-based ISF (OISF) incorporates object information in
the connectivity function to increase boundary adherence for a
specific object of interest [3].

@ Recursive ISF (RISF) applies ISF recursively on superpixel
graphs to obtain a hierarchical image segmentation [4].
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Clustering of superpixels and object saliency estimation

Superpixels can considerably reduce the processing time for data
clustering.

Clusters are optimum-path trees in the feature space rooted at
each dome of a probability density function [1, 8, 9].
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Clustering of superpixels and object saliency estimation

Clustering is used to select the most suitable markers for object
saliency estimation.

The method must avoid pixels from background markers that fall
into clusters most populated by pixels from object markers.
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Clustering of superpixels and object saliency estimation

@ A seed set S is defined by eliminating the undesired
background pixels [1, 10].

@ The saliency value of each pixel t is #(t\;b(t) where V,(t)
and Vj(t) are costs of optimum paths in the feature space
from object and background seeds in S, respectively.
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Object delineation

@ Object delineation can use connectivity functions that
optimally cuts the graph based on its arc weights [18, 19].
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Object delineation

@ Object delineation can use connectivity functions that
optimally cuts the graph based on its arc weights [18, 19].

@ The arc weights are usually computed prior delineation as a
function of image and object properties w/o or w/ shape
constraints [10, 20, 34, 35].

@ We show here that object information can also be extracted
from the growing trees for dynamic arc-weight assignment —
a method called Dynamic Trees [1, 16].
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Object delineation

Example of Dynamic Trees — each region is an optimum-path
tree, growing in a non-decreasing order of path costs.
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Object delineation

Example of Dynamic Trees — each region is an optimum-path
tree, growing in a non-decreasing order of path costs.
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Experiments and results

@ The experiments involve robot [1] and real [16] users selecting
seeds on Grab-Cut images.
@ The robot selects one seed (disk with radius 1) per iteration

at the center of an error component and stops after 15
iterations or under trivial criteria.
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Experiments and results

@ Real users are represented by two benchmarks of scribbles,
then this experiment involves a single intervention for object
delineation.

Examples of scribbles from Gulshan's [28] and Andrade’s [29]
datasets, respectively.
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Experiments and results

Compared object delineation algorithms and arc-weight models
include.

e Watershed Cut [30] (WS Cut): the dissimilarity between
adjacent nodes based on image properties.

@ Min-Cut [32]: the similarity between adjacent nodes based on
image properties.

e Dynamic Trees [16]: the dissimilarity between target node and
expanding optimum-path tree.

@ Closest Dyn. Trees [16]: the dissimilarity between target node
and expanding optimum-path forest.

All of them can add pairwise dissimilarity /similarity between
adjacent nodes based on object saliency.
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Results using the robot's markers

Mean Dice coefficient and number of iterations required for

convergence with the robot.

Method Mean Dice (%) | Iterations
Dyn. Trees + Obj. Sal. (we) | 0.968 + 0.0295 11.8
WS Cut + Obj. Sal. (wp) 0.961 + 0.0421 12.6
Dyn. Trees (ws) 0.961 £ 0.0491 11.9
DEC 0.942 +0.0814 4.00
WS Cut (wy) 0.933 = 0.0854 13.8
Min-Cut + Obj. Sal. (ws) | 0.932 = 0.0845 133
Min-Cut (ws) 0.918 =+ 0.108 13.6




Results using the robot's markers

Mean Dice coefficient per iteration on the unseen test set with the
robot.

Convergence of Robot User Segmentation
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Object saliency was not used for arc-weight assignment in the
results above.
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Results using Gulshan's markers

Mean Dice coefficient and mean execution time (seconds) for a
single user intervention using Gulshan’s markers [28].

Method Mean Dice (%)  Time (secs)

Dyn. Trees (ws) 84.0+1.3 0.042 £0.016
Closest Dyn. Tree (wg) 81.9+1.38 4.633 £2.573
Min-Cut (w3) 762+16 0.230 £ 0.167
WS Cut (wy) 75.6 £ 1.6 0.038 +0.012
PWg—> 723+£17 0.966 + 0.300

Object saliency was not used for arc-weight assignment in the
results above.



Results using Andrade’s Markers

Mean Dice coefficient and mean execution time (seconds) for a
single user intervention using Andrade’s markers [29].

Method Mean Dice (%) Time (secs)
Closest Dyn. Trees (wg) 95.4 +0.04 8.460 + 3.802
Dyn. Trees (ws) 92.1+0.08 0.046 +0.018
Min-Cut (ws3) 90.6 +0.08 0.123 +0.075
PW,_, 89.9 £0.08 1.015 £ 0.299
WS Cut (wq) 89.5 +0.09 0.039 £ 0.012

Object saliency was not used for arc-weight assignment in the
results above.

28 /33



Qualitative results

Results obtained by using the Andrade’s scribbles dataset.
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Dyn. Tree Closest Dyn. Tree
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Qualitative results

Results obtained by using the Andrade’s scribbles dataset.

Closest Dn. Tree
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Conclusion

@ Optimum connectivity is important to separate objects with
similar image properties.

@ It is possible to create semantic models during interactive
image segmentation (prior and during object delineation).

@ The object information from that semantic model can
considerably improve superpixel and object delineation.
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Research directions

@ Which are the semantic models that can learn object
information from a single (few) image (s)? [10]
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Research directions

@ Which are the semantic models that can learn object
information from a single (few) image (s)? [10]

@ Can we improve a semantic model from one or multiple users’
inputs, w/o or w/ shape constraints [20], along a collaborative
segmentation process? [17]

@ Can we use a semantic model to suggest relevant markers for
its learning process? [23]

@ How can we exploit superpixel graphs to improve delineation
and reduce user effort? [24]

@ Can we further reduce user effort in segmentation correction
when resuming segmentation into an optimum-path
forest? [21]
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