Distance between separating circles and points

Peter Veelaert

To express a
a property that involves an infinite number of geometric representants in terms of
a finite set of geometric conditions that are easy to verify

Classical example

the points of S lie at distance <1 from a straight line
if
each of its 3-point subsets lie at distance < 1 from a straight line

Goal of this talk

Given: an infinite family of separating circles
Problem: Find the smallest (largest) distance between p and this infinite family

Solution: Try to express this smallest distance by a finite set of circles

Broader context

Distance between two sets of separating circles
Intersection problems
\square Tangents ...

Overview

Infinite collections of circles
\square Elementary circular separations

- Circular and linear separability
\square Properties that translate our infinite into a finite problem
- Area covered by circles
- Distance between point and circles

Circle passing through 3 points

Equation with linear parameters
$x^{2}+y^{2}-2 a x-2 b y+c=0$
$c \leq a^{2}+b^{2}$

Plane = parameters of all circles passing through 1 point.

Intersection 3 planes = parameters of 1 circle

Domain of separating circles

The separating circles define a domain bounded by

$$
\begin{aligned}
& x_{i}^{2}+y_{i}^{2}-2 a x_{i}-2 b y_{i}+c \leq 0, \quad\left(x_{i}, y_{i}\right) \in S^{-} \\
& x_{j}^{2}+y_{j}^{2}-2 a x_{j}-2 b y_{j}+c \geq 0, \quad\left(x_{j}, y_{j}\right) \in S^{+} \\
& c \leq a^{2}+b^{2}
\end{aligned}
$$

 Is a domain always a polytope?

Domain is a H-polyhedron if S^{-}is non-empty

Domain is a (bounded) polytope if S^{-}and S^{+}cannot be separated by a straight line

Overview

\square Infinite collections of circles

\square Elementary circular separations

- Circular and linear separability
\square Properties that translate infinite into finite problem
- Area covered by circles
- Distance between point and circles

Elementary circular separations

We want to characterize a domain by a finite set of circles. This leads to elementary circular separations.

Elementary circular separations

Definition

Let a, b, c, \ldots be $\mathrm{N}>2$ points on common circle Introduce signs, e.g., $a^{+} b^{+} c^{-} d^{-}$

Then $a^{+} b^{+} c^{-} d^{-}$is an elementary circular separation if \ldots

Elementary circular separations

... if there is a second circle that separates $a+b+$ from $c-d-$

Elementary circular separations

Here $a+b+c-d$ - is NOT an elementary circular separation ...

Circular and linear separability

Property. We have an elementary circular separation if and only if the + points can be linearly separated from the - points.

Circular and linear separability

Proof that separating circle is impossible

Given: 4 points on a circle that cannot be separated linearly

Circular and linear separability

Proof that separating circle is impossible

Construct bisector of p1 and p3

- p1 outside
- p3 inside
center of separating circle must lie in halfplane containing p3

Circular and linear separability

- p1 outside
- p3 inside
- p2 outside
center must lie in S3
- p1 outside
- p4 inside
- p2 outside
center must lie in S4 and S3
impossible

Elementary circular separations

An elementary circular separation characterizes a domain unambigously when we attribute signs to the remaining points of S

It is a minimal characterizing subset of a signed set S.

However, it is not unique (unless we impose additional constraints, such
 as an order on the points of S).

Elementary circular separations

Each vertex of a domain corresponds to an elementary circular separation

Each edge corresponds to a pencil of circles passing through two common points.

Each face corresponds to a pencil of circles passing through one common point.

Overview

\square Infinite collections of circles

\square Elementary circular separations
-Circular and linear separability
\square Properties that translate infinite into finite problem

- Area covered by circles
- Distance between point and circles

Area covered

Property. Area covered by all circles of domain is the same as area covered by circles of elementary circular separations.

IBBT ноóschooulicent

Distance between point and circles

Theorem (for points outside covered area)
smallest (largest) distance between p and any member of separating family is equal to
smallest (largest) distance between p and circles that correspond to elementary circular separations of domain

Sketch of proof

Sketch of proof smallest distance

 (along an edge of the domain)

Sketch of proof

Sketch of part of proof

 (along an edge of the domain)If p in $R 2, R 3, R 6$ or $R 7$ then there is a circle passing through p

If p in R1 or R5 then closest circle is C 1

If p in R4 or R8 then closest circle is C2

Either distance is zero or closest circle is C 1 or C2

Concluding remarks

EElementary separation is a general concept (also possible for lines, planes, ...)

DProofs are not difficult but require some care
The computation of the domain is the most
 time consuming part

