

Distance between separating circles and points

Peter Veelaert

IBBT

BBT

To express a

a property that involves an infinite number of geometric representants in terms of

a finite set of geometric conditions that are easy to verify

Classical example

the points of S lie at distance < 1 from a straight line if

each of its 3-point subsets lie at distance < 1 from a straight line

Given: an infinite family of separating circles **Problem**: Find the smallest (largest) distance between p and this infinite family

Solution: Try to express this smallest distance by a finite set of circles

Broader context

Distance between two sets of separating circles
Intersection problems
Tangents ...

DGCI 2011

- □ Infinite collections of circles
- Elementary circular separations
 - Circular and linear separability

□ Properties that translate our infinite into a finite problem

- Area covered by circles
- Distance between point and circles

BBT

Circle passing through 3 points

vision systems

Equation with linear parameters

$$x^{2} + y^{2} - 2ax - 2by + c = 0$$
$$c \le a^{2} + b^{2}$$

DGCI 2011

Plane = parameters of all circles passing through 1 point.

Intersection 3 planes = parameters of 1 circle

LID VAN DE ASSOCIA

vision systems

Domain of separating circles

The separating circles define a domain bounded by

$$x_i^2 + y_i^2 - 2ax_i - 2by_i + c \le 0, \quad (x_i, y_i) \in S^-$$

$$x_j^2 + y_j^2 - 2ax_j - 2by_j + c \ge 0, \quad (x_j, y_j) \in S^+$$

$$c \le a^2 + b^2$$

HOGESCHOOL LID VAN DE ASSOCIATIE UNIVERSITEIT

IBBT

GENT

Is a domain always a polytope?

systems

Domain is a H-polyhedron if S^- is non-empty

Domain is a (bounded) polytope if S^- and S^+ cannot be separated by a straight line

□ Infinite collections of circles

Elementary circular separationsCircular and linear separability

Properties that translate infinite into finite problem

- Area covered by circles
- Distance between point and circles

Elementary circular separations

We want to characterize a domain by a finite set of circles. This leads to **elementary circular separations**.

DGCI 2011

stems

Elementary circular separations

Definition

DGCI 2011

Let a, b, c, ... be N > 2 points on common circle Introduce signs, e.g., $a^+b^+c^-d^-$

Then $a^+b^+c^-d^-$ is an elementary circular separation if ...

Elementary circular separations

... if there is a second circle that separates a+ b+ from c- d-

ision

systems

V

Elementary circular separations

Here a+ b+ c- d- is NOT an elementary circular separation ...

IBBT

Property. We have an elementary circular separation if and only if the + points can be linearly separated from the - points.

on

systems

Proof that separating circle is impossible

Given: 4 points on a circle that cannot be separated linearly

Circular and linear separability

IBBT

HOGESCHOOL

Proof that separating circle is impossible

Construct bisector of p1 and p3

- p1 outside
- p3 inside
- \rightarrow

center of separating circle must lie in halfplane containing p3

Circular and linear separability

- p1 outside
- p3 inside
- p2 outside

center must lie in S3

- p1 outside
- p4 inside
- p2 outside

center must lie in S4 and S3

impossible

Elementary circular separations

An elementary circular separation characterizes a domain unambigously when we attribute signs to the remaining points of S

It is a **minimal** characterizing subset of a signed set S.

However, it is **not unique** (unless we impose additional constraints, such as an order on the points of S).

HOGESCHOOL

LID VAN DE ASSOC

BBT

Elementary circular separations

Each **vertex** of a domain corresponds to an elementary circular separation

Each **edge** corresponds to a pencil of circles passing through two common points.

Each **face** corresponds to a pencil of circles passing through one common point.

GENT

- Infinite collections of circles
- Elementary circular separationsCircular and linear separability
- □ Properties that translate infinite into finite problem
 - Area covered by circles
 - Distance between point and circles

Area covered

Property. Area covered by all circles of domain is the same as area covered by circles of elementary circular separations.

IBBT

HOGESCHOOL

Distance between point and circles

р

Theorem (for points outside covered area)

smallest (largest) distance between p and any member of separating family is equal to

smallest (largest) distance between p and circles that correspond to elementary circular separations of domain

BBT

Sketch of proof

Sketch of proof smallest distance (along an edge of the domain)

IBBT

Sketch of proof

Sketch of part of proof (along an edge of the domain)

If p in R2, R3, R6 or R7 then there is a circle passing through p

If p in R1 or R5 then closest circle is C1

If p in R4 or R8 then closest circle is C2

Either distance is zero or closest circle is C1 or C2

IBBT

GENT

HOGESCHOOL

Concluding remarks

Elementary separation is a general concept (also possible for lines, planes, ...)

□ Proofs are not difficult but require some care

The computation of the domain is the most time consuming part

BBT