

Introduction

Path-based distances

Local B- and B* -maxima

Examples

Conclusions

Sparse Object Representations by Digital Distance Functions

Robin Strand

Centre for Image Analysis Uppsala University

> DGCI, Nancy April 8, 2011

> > (ロ) (同) (三) (三) (三) (○) (○)

Robin Strand, (1:26)

Introduction

Path-based distances

Local B- and B*-maxima

Examples

Conclusions

Contents

Introduction

Path-based distances

Local B- and B*-maxima

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Examples

Conclusions

Robin Strand, (2:26)

Outline

Introduction

Path-based distances

- Local B- and B^* -maxima
- Examples
- Conclusions

Introduction

Skeletons

- Thin
- Centered
- Topology preserving
- Reversible anchor points

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Digital distance functions

Outline

Introduction

Path-based distances

Local B- and B* -maxima

Examples

Conclusions

Introduction

Skeletons

- ► Thir
- Centered
- Topology preserving
- Reversible anchor points

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Digital distance functions

Outline

Introduction

Path-based distances

- Local B- and B* -maxima
- Examples
- Conclusions

Introduction

Skeletons

- ► Thir
- Centered
- Topology preserving
- Reversible anchor points

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Digital distance functions

Outline

Introduction

Path-based distances

Local B- and B* -maxima

Examples

Conclusions

Weighted distances

The path below is a minimal cost path between \mathbf{p}_0 and \mathbf{p}_6 of cost $3\alpha + 3\beta$.

Outline

Introduction

Path-based distances

Local B- and B^* -maxima

Examples

Conclusions

Distances based on neighborhood sequence

The path is a *B*-path for B = (2, 2, 2, ...) = (2) and B = (1, 2), but not for B = (1).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Robin Strand, (5:26)

Outline

Introduction

Path-based distances

Local B- and B^* -maxima

Examples

Conclusions

Weighted neighborhood sequences

Definition

Given a neighborhood sequence (ns) *B* and two weights α and β , a path \mathcal{P} is a *minimal cost* (α, β) -*weighted B-path* between two points **p** and **q** if

- $\blacktriangleright \mathcal{P}$ is a *B*-path and
- there is no other *B*-path between p and q with lower cost.

Outline

Introduction

Path-based distances

Local B- and B* -maxima

Examples

Conclusions

Weighted neighborhood sequences

Let
$$B = (1, 2)$$
 and $\alpha = 2$, $\beta = 3$.

This path is a *B*-path of cost $12\alpha = 24$.

Robin Strand, (7:26)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ◆ ◇◇◇

Outline

Introduction

Path-based distances

Local B- and B* -maxima

Examples

Conclusions

Weighted neighborhood sequences

Let
$$B = (1, 2)$$
 and $\alpha = 2$, $\beta = 3$.

This path is of cost $6\beta = 18$. It is *not* a *B*-path.

Robin Strand, (8:26)

・ロト・西ト・ヨト・ヨー ひゃぐ

Outline

Introduction

Path-based distances

Local B- and B* -maxima

Examples

Conclusions

Weighted neighborhood sequences

Let
$$B = (1, 2)$$
 and $\alpha = 2$, $\beta = 3$.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

This path is a *minimal cost B*-path. Its cost is $4\alpha + 4\beta = 20$.

Robin Strand, (9:26)

Outline

Introduction

Path-based distances

Local B- and B^* -maxima

Examples

Conclusions

- A ball in an object X is a maximal ball if there is no other ball in X containing.
- An object X is equal to the union of its set of maximal balls.
- For the weighted distance with α = 3 and β = 4, the set of centers of maximal balls can be obtained by a local check (finding the local maxima) in the distance transform. Relabeling of distance values that can not be attained is needed.
- Is this true also for (weighted) distances based on neighborhood sequences? To answer this question, we introduce the notion of maximal path-points, local *B*-maxima and local *B**-maxima.

Outline

Introduction

Path-based distances

Local B- and B^* -maxima

Examples

Conclusions

- A ball in an object X is a maximal ball if there is no other ball in X containing.
- An object X is equal to the union of its set of maximal balls.
- For the weighted distance with α = 3 and β = 4, the set of centers of maximal balls can be obtained by a local check (finding the local maxima) in the distance transform. Relabeling of distance values that can not be attained is needed.
- Is this true also for (weighted) distances based on neighborhood sequences? To answer this question, we introduce the notion of maximal path-points, local *B*-maxima and local *B**-maxima.

Outline

Introduction

Path-based distances

Local B- and B^* -maxima

Examples

Conclusions

- A ball in an object X is a maximal ball if there is no other ball in X containing.
- An object X is equal to the union of its set of maximal balls.
- For the weighted distance with α = 3 and β = 4, the set of centers of maximal balls can be obtained by a local check (finding the local maxima) in the distance transform. Relabeling of distance values that can not be attained is needed.
- Is this true also for (weighted) distances based on neighborhood sequences? To answer this question, we introduce the notion of maximal path-points, local *B*-maxima and local *B**-maxima.

Outline

Introduction

Path-based distances

Local B- and B^* -maxima

Examples

Conclusions

- A ball in an object X is a maximal ball if there is no other ball in X containing.
- An object X is equal to the union of its set of maximal balls.
- For the weighted distance with α = 3 and β = 4, the set of centers of maximal balls can be obtained by a local check (finding the local maxima) in the distance transform. Relabeling of distance values that can not be attained is needed.
- Is this true also for (weighted) distances based on neighborhood sequences? To answer this question, we introduce the notion of maximal path-points, local *B*-maxima and local *B**-maxima.

Distance transform

Outline

UNIVERSITET

Introduction

Path-based distances

Local B- and B*-maxima

Examples

Conclusions

X is the object, \overline{X} is the background. Given *B* and weights α, β , the value of $DT_{\mathcal{C}}(\mathbf{p})$ for any point $\mathbf{p} \in X$ is

 $\min_{\mathbf{q}\in\overline{X}} \left\{ \text{cost of the minimal cost } B\text{-path between } \mathbf{p} \text{ and } \mathbf{q} \right\}.$

Outline

Introduction

Path-based distances

Local B- and B* -maxima

Examples

Conclusions

Local maxima

Definition

A point $\mathbf{p} \in X$ is a local maximum if $DT_{\mathcal{C}}(\mathbf{p}) > DT_{\mathcal{C}}(\mathbf{p} + \mathbf{n}_i) - w_i$, where the set $\{\mathbf{n}_i\}$ defines the neighborhood at \mathbf{p} and w_i are the corresponding weights.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Outline

Introduction

Path-based distances

Local B- and B^* -maxima

Examples

Conclusions

Local maxima

Definition

A point $\mathbf{p} \in X$ is a local maximum if $DT_{\mathcal{C}}(\mathbf{p}) > DT_{\mathcal{C}}(\mathbf{p} + \mathbf{n}_i) - w_i$, where the set $\{\mathbf{n}_i\}$ defines the neighborhood at \mathbf{p} and w_i are the corresponding weights.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Outline

Introduction

Path-based distances

Local B- and B* -maxima

Examples

Conclusions

Local maxima

Definition

A point $\mathbf{p} \in X$ is a local maximum if

 $DT_{\mathcal{C}}(\mathbf{p}) > DT_{\mathcal{C}}(\mathbf{p} + \mathbf{n}_i) - w_i$, where the set $\{\mathbf{n}_i\}$ defines the neighborhood at \mathbf{p} and w_i are the corresponding weights.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Relabeled distance values

1	1	1	1
1	5	4	1
1	1	1	

Robin Strand, (13:26)

Outline

Introduction

Path-based distances

Local B- and B* -maxima

Examples

Conclusions

Local maxima

Definition

A point $\mathbf{p} \in X$ is a local maximum if

 $DT_{\mathcal{C}}(\mathbf{p}) > DT_{\mathcal{C}}(\mathbf{p} + \mathbf{n}_i) - w_i$, where the set $\{\mathbf{n}_i\}$ defines the neighborhood at \mathbf{p} and w_i are the corresponding weights.

Relabeled distance values

Outline

Introduction

Path-based distances

Local B- and B* -maxima

Examples

Conclusions

Local maxima

Definition

A point $\mathbf{p} \in X$ is a local maximum if $DT_{\mathcal{C}}(\mathbf{p}) > DT_{\mathcal{C}}(\mathbf{p} + \mathbf{n}_i) - w_i$, where the set $\{\mathbf{n}_i\}$ defines the neighborhood at \mathbf{p} and w_i are the corresponding weights.

- weighted distances fixed neighborhood.
- ns-distances the size of the neighborhood is determined by the length of the path = the distance value.
- weighted ns-distances the size of the neighborhood can *not* be determined by DT_C.

Outline

Introduction

Path-based distances

Local B- and B^* -maxima

Examples

Conclusions

Local maxima

Definition

A point $\mathbf{p} \in X$ is a local maximum if $DT_{\mathcal{C}}(\mathbf{p}) > DT_{\mathcal{C}}(\mathbf{p} + \mathbf{n}_i) - w_i$, where the set $\{\mathbf{n}_i\}$ defines the neighborhood at \mathbf{p} and w_i are the corresponding weights.

- weighted distances fixed neighborhood.
- ns-distances the size of the neighborhood is determined by the length of the path = the distance value.
- weighted ns-distances the size of the neighborhood can *not* be determined by DT_C.

Outline

Introduction

Path-based distances

Local B- and B^* -maxima

Examples

Conclusions

Local maxima

Definition

A point $\mathbf{p} \in X$ is a local maximum if $DT_{\mathcal{C}}(\mathbf{p}) > DT_{\mathcal{C}}(\mathbf{p} + \mathbf{n}_i) - w_i$, where the set $\{\mathbf{n}_i\}$ defines the neighborhood at \mathbf{p} and w_i are the corresponding weights.

- weighted distances fixed neighborhood.
- ns-distances the size of the neighborhood is determined by the length of the path = the distance value.
- weighted ns-distances the size of the neighborhood can *not* be determined by DT_C.

Outline

Introduction

Path-based distances

Local B- and B^* -maxima

Examples

Conclusions

Local maxima

Definition

A point $\mathbf{p} \in X$ is a local maximum if $DT_{\mathcal{C}}(\mathbf{p}) > DT_{\mathcal{C}}(\mathbf{p} + \mathbf{n}_i) - w_i$, where the set $\{\mathbf{n}_i\}$ defines the neighborhood at \mathbf{p} and w_i are the corresponding weights.

- weighted distances fixed neighborhood.
- ns-distances the size of the neighborhood is determined by the length of the path = the distance value.
- weighted ns-distances the size of the neighborhood can *not* be determined by DT_C.

Outline

Introduction

Path-based distances

Local B- and B* -maxima

Examples

Conclusions

Maximal path-points

Definition

A point $\mathbf{p} \in X$ is a *maximal path-point* if there is a point $\mathbf{q} \in \overline{X}$ such that

- $\langle \mathbf{q} = \mathbf{p}_0, \mathbf{p}_1, \dots, \mathbf{p}_n = \mathbf{p} \rangle$ is a minimal cost (α, β) -weighted *B*-path of length *n* that defines $DT_{\mathcal{C}}(\mathbf{p})$ and
- ► there is no \mathbf{p}' such that $\langle \mathbf{q} = \mathbf{p}_0, \mathbf{p}_1, \dots, \mathbf{p}_n, \mathbf{p}_{n+1} = \mathbf{p}' \rangle$ is a minimal cost (α, β) -weighted *B*-path of length n + 1 that defines $DT_{\mathcal{C}}(\mathbf{p}')$.

We denote the set of maximal points by MP.

Outline

Introduction

Path-based distances

Local B- and B* -maxima

Examples

Conclusions

Maximal path-points

Figure: $DT_{\mathcal{C}}$, B = (1, 2) and $(\alpha, \beta) = (2, 3)$

(日)

Path of length five.

Robin Strand, (16:26)

Outline

Introduction

Path-based distances

Local *B*- and B^* -maxima

Examples

Conclusions

Maximal path-points

Figure: $DT_{\mathcal{C}}$, B = (1, 2) and $(\alpha, \beta) = (2, 3)$

Path of length four. This path defines a maximal path point. < □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Robin Strand, (17:26)

Outline

Introduction

Path-based distances

Local B- and B* -maxima

Examples

Conclusions

Maximal path-points

						1
				1	1	2
			1	2	2	2
		1	2	2	3	3
	1	2	2	3	4	4
	1	2	3	4	4	5
1	2	2	3	4	5	6

Figure: $DT_{\mathcal{L}}$, B = (1, 2) and $(\alpha, \beta) = (2, 3)$

Outline

Introduction

Path-based distances

Local B- and B* -maxima

Examples

Conclusions

Representability, maximal path-points

Theorem If either

$$\alpha < \beta \le 2\alpha \text{ or} \tag{1}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

$$\alpha = \beta \text{ and } (B = (1) \text{ or } B = (2)),$$
 (2)

then *X* can be recovered from the set of maximal path-points.

Note: not ns-distances in general!

Robin Strand, (19:26)

Introduction

Path-based distances

Local B- and B* -maxima

Examples

Conclusions

Smallest neighborhood

Definition

Given an object *X*, a ns *B* and weights α , β , we say that $DT_{\mathcal{L}}$ associated with $DT_{\mathcal{C}}$ holds information about the smallest neighborhoods if it holds information about the minimal cost-path with smallest size of the neighborhood at each point of *X*.

(ロ) (同) (三) (三) (三) (○) (○)

UNIVERSITET

Local B-maxima

Outline

Introduction

Path-based distances

Local B- and B^* -maxima

Examples

Conclusions

A local *B*-maximum is a local maximum obtained by using the neighborhood defined by $b (DT_{\mathcal{L}} (\mathbf{p}) + 1)$ at the point **p**.

Introduction

Path-based distances

Local B- and B* -maxima

Examples

Conclusions

Local B-maxima

Theorem

If $DT_{\mathcal{L}}$ holds information about the smallest neighborhoods, then the set of maximal path points equals the set of local *B*-maxima.

This theorem gives an efficient way to compute this set of points.

Introduction

Path-based distances

Local B- and B*-maxima

Examples

Conclusions

Local B-maxima

Theorem

If $DT_{\mathcal{L}}$ holds information about the smallest neighborhoods, then the set of maximal path points equals the set of local *B*-maxima.

This theorem gives an efficient way to compute this set of points.

UNIVERSITET

Local B*-maxima

Outline

Introduction

Path-based distances

Local B- and B^* -maxima

Examples

Conclusions

A local B^* -maximum is a local maximum obtained by using the neighborhood defined by $b(DT_{\mathcal{L}}(\mathbf{p}))$ at the point \mathbf{p} .

Outline

Introduction

Path-based distances

Local B- and B*-maxima

Examples

Conclusions

Representability, local B*-maxima

Theorem

If $DT_{\mathcal{L}}$ holds information about the smallest neighborhoods, then the original object can be recovered from the set of local B^* -maxima.

UNIVERSITET

Introduction

Path-based distances

Local B- and B* -maxima

Examples

local B-maxima	local B*-maxima	CMBs		
(the set MP)				
$B = (1), (\alpha, \beta) = (1, 1)$				
70	754			
222 elements	222 elements	222 elements		

UNIVERSITET

Introduction

Path-based distances

Local B- and B* -maxima

Examples

local B-maxima	local B*-maxima	CMBs		
(the set MP)				
$B = (2), (\alpha, \beta) = (1, 1)$				
No. of the second se	Street.	ST.		
250 elements	250 elements	250 elements		

UNIVERSITET

Introduction

Path-based distances

Local B- and B* -maxima

Examples

UNIVERSITET

Introduction

Path-based distances

Local B- and B* -maxima

Examples

local B-maxima	local B*-maxima	CMBs		
(the set MP)				
$B = (2), (\alpha, \beta) = (3, 4)$				
West	M.			
		723		
453 elements	453 elements	317 elements		

UNIVERSITET

Introduction

Path-based distances

Local B- and B* -maxima

Examples

UNIVERSITET

Introduction

Path-based distances

Local B- and B* -maxima

Examples

Outline

- Introduction
- Path-based distances
- Local B- and B^* -maxima
- Examples
- Conclusions

Conclusions, Summary

- The maximal path-points are the points that do not propagate distance information when computing the DT.
- The set of maximal path-points MP can be computed efficiently by finding local B-maxima.
- Local B*-maxima.
- If the weights α and β are equal, then the set of B-maxima is not reversible.
- When a constant neighborhood sequence is used, the two approaches are equal

Future work:

Relabeling

Outline

- Introduction
- Path-based distances
- Local B- and B^* -maxima
- Examples
- Conclusions

Conclusions, Summary

- The maximal path-points are the points that do not propagate distance information when computing the DT.
- The set of maximal path-points MP can be computed efficiently by finding local B-maxima.
- Local B*-maxima.
- If the weights α and β are equal, then the set of B-maxima is not reversible.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

When a constant neighborhood sequence is used, the two approaches are equal

Future work:

Relabeling

Robin Strand, (26:26)

Outline

- Introduction
- Path-based distances
- Local B- and B^* -maxima
- Examples
- Conclusions

Conclusions, Summary

- The maximal path-points are the points that do not propagate distance information when computing the DT.
- The set of maximal path-points MP can be computed efficiently by finding local B-maxima.
- Local B*-maxima.
- If the weights α and β are equal, then the set of B-maxima is not reversible.
- When a constant neighborhood sequence is used, the two approaches are equal

Future work:

Relabeling

Outline

- Introduction
- Path-based distances
- Local B- and B^* -maxima
- Examples
- Conclusions

Conclusions, Summary

- The maximal path-points are the points that do not propagate distance information when computing the DT.
- The set of maximal path-points MP can be computed efficiently by finding local B-maxima.
- Local B*-maxima.
- If the weights α and β are equal, then the set of B-maxima is not reversible.

(ロ) (同) (三) (三) (三) (○) (○)

When a constant neighborhood sequence is used, the two approaches are equal

Future work:

► Relabeling

Outline

- Introduction
- Path-based distances
- Local B- and B^* -maxima
- Examples
- Conclusions

Conclusions, Summary

- The maximal path-points are the points that do not propagate distance information when computing the DT.
- The set of maximal path-points MP can be computed efficiently by finding local B-maxima.
- Local B*-maxima.
- If the weights α and β are equal, then the set of B-maxima is not reversible.
- When a constant neighborhood sequence is used, the two approaches are equal

Future work:

Relabeling

Outline

- Introduction
- Path-based distances
- Local B- and B^* -maxima
- Examples
- Conclusions

Conclusions, Summary

- The maximal path-points are the points that do not propagate distance information when computing the DT.
- The set of maximal path-points MP can be computed efficiently by finding local B-maxima.
- Local B*-maxima.
- If the weights α and β are equal, then the set of B-maxima is not reversible.
- When a constant neighborhood sequence is used, the two approaches are equal

Future work:

Relabeling