LIRIS

<ロト <四ト <注入 <注下 <注下 <

Delaunay properties of digital straight segments

Tristan Roussillon¹ and Jacques-Olivier Lachaud²

¹LIRIS, University of Lyon ²LAMA, University of Savoie

April 6, 2011

Definitions: patterns and Delaunay triangulation

Observation: Delaunay triangulation of patterns?

Characterization: proof

Conclusion: new output-sensitive algorithms

 Digital straight line (DSL)

Standard DSL

The points $(x, y) \in \mathbb{Z}^2$ verifying $\mu \le ax - by < \mu + |a| + |b|$ belong to the standard DSL $D(a, b, \mu)$ of slope $\frac{a}{b}$ and intercept μ $(a, b, \mu \in \mathbb{Z} \text{ and } pgcd(a, b) = 1)$.

Pattern

 a pattern is a connected subset of a DSL between two consecutive upper leaning points

Pattern

- a pattern is a connected subset of a DSL between two consecutive upper leaning points
- its staircase representation is the polygonal line linking the points in order

Pattern

- a pattern is a connected subset of a DSL between two consecutive upper leaning points
- its staircase representation is the polygonal line linking the points in order
- its chain code is a Christoffel word

Example: pattern UU'

Delaunay triangulation

Triangulation of a finite set of points $\ensuremath{\mathcal{S}}$

Partition of the convex hull of S into triangular facets, whose vertices are points of S.

Delaunay condition

The interior of the circumcircle of each triangular facet does not contain any point of S.

always exists and is unique (without 4 cocircular points)

Delaunay triangulation of patterns

Pattern of slope 5/9

Delaunay triangulation of patterns

Pattern of slope 5/8

Delaunay triangulation of patterns

Pattern of slope 2/5

Three remarks

1. the Delaunay triangulation of *UU*' contains the staircase representation of *UU*'.

Pattern of slope 4/7

Three remarks

- 1. the Delaunay triangulation of UU' contains the staircase representation of UU'.
- 2. *U*, *U*' and the closest point of *UU*' to [*UU*'] (Bezout point) define a facet.

Three remarks

- 1. the Delaunay triangulation of UU' contains the staircase representation of UU'.
- 2. *U*, *U*' and the closest point of *UU*' to [*UU*'] (Bezout point) define a facet.
- 3. the Delaunay triangulation of some patterns contains the Delaunay triangulation of subpatterns.

Pattern of slope 4/7

Dividing the triangulation (remark 1)

► The convex hull of UU' is divided into a upper part H⁺(UU') and a lower part H⁻(UU').

Dividing the triangulation (remark 1)

- ► The convex hull of UU' is divided into a upper part *H*⁺(*UU'*) and a lower part *H*⁻(*UU'*).
- ► The Delaunay triangulation of UU' is divided into a upper part T⁺(UU') and a lower part T⁻(UU').

Pattern of slope 4/7

Main facet of a pattern (remark 2)

Main facet = triangle UBU'

Let *B* the Bezout point of *UU*' and let

- $[q_0; \ldots, q_i, \ldots, q_n]$ (with $q_n > 1$) be the quotients and
- $(b_0, a_0), \dots, (b_i, a_i), \dots, (b_n, a_n)$ be the convergent vectors of the continued fraction expansion of $\frac{a}{b}$.

$$\overrightarrow{UU'} = \overrightarrow{UB} + \overrightarrow{BU'} = (b_n, a_n) + ((q_n - 1)(b_n, a_n) + (b_{n-1}, a_{n-1}))$$

Equivalent to the *splitting formula* [Voss, 1993] only expressed in terms of quotients.

Set of facets of a pattern (remark 3)

UB and *BU*['] are both patterns their chain code are Christoffel words

other facets defined by induction

 geometrical characterization (Bezout point)

0 010 0101

Set of facets of a pattern (remark 3)

UB and *BU*['] are both patterns their chain code are Christoffel words

other facets defined by induction

 geometrical characterization (Bezout point)

0 0 1 0 0 1 0 1

A B > A B >

 $\Xi \rightarrow$

Set of facets of a pattern (remark 3)

UB and *BU*['] are both patterns their chain code are Christoffel words

other facets defined by induction

 geometrical characterization (Bezout point)

0 010101

Main result

Theorem

The facets $\mathcal{F}(UU')$ of the pattern UU' is a triangulation of $\mathcal{H}^+(UU')$ such that each facet has points of UU' as vertices and satisfies the Delaunay property, i.e. $\mathcal{F}(UU') = \mathcal{T}^+(UU')$.

the (upper part of the) Delaunay triangulation of a pattern is characterized by the continued fraction expansion of its slope We have to show that:

- 1. the set of facets $\mathcal{F}(UU')$ is a triangulation of $\mathcal{H}^+(UU')$ (easy part)
- 2. the interior of the circumcircle of each facet of $\mathcal{F}(UU')$ does not contain any point of UU' (let us focus on that part)

Let \mathcal{D} be a disk whose boundary passes through U and U' and whose center is located above (UU'). The interior of \mathcal{D} contains a lattice point below or on (UU') if and only if it contains (at least) B, the Bezout point of UU'.

Let \mathcal{D} be a disk whose boundary passes through U and U' and whose center is located above (UU'). The interior of \mathcal{D} contains a lattice point below or on (UU') if and only if it contains (at least) B, the Bezout point of UU'.

Let \mathcal{D} be a disk whose boundary passes through U and U' and whose center is located above (UU'). The interior of \mathcal{D} contains a lattice point below or on (UU') if and only if it contains (at least) B, the Bezout point of UU'.

Let \mathcal{D} be a disk whose boundary $\partial \mathcal{D}$ is the circumcircle of UBU'. The interior of \mathcal{D} contains none of the *background points* of UU' (lattice points below straight lines (UB) or (BU')).

Applying lemma 2 by induction over all the facets

The background points of UU' (which contains UU') are contained in the background points of UB (and BU').

Applying lemma 2 by induction over all the facets

The background points of UU' (which contains UU') are contained in the background points of UB (and BU').

Applying lemma 2 by induction over all the facets

The background points of UU' (which contains UU') are contained in the background points of UB (and BU').

Definitions: patterns and Delaunay triangulation

Observation: Delaunay triangulation of patterns?

Characterization: proof

Conclusion: new output-sensitive algorithms

Pattern

pattern of slope 8/5

Pattern

pattern of slope 8/5

Pattern

pattern of slope 8/5

Pattern

pattern of slope 8/5

æ

17/19

ヘロト 人間 とく ヨン 人 ヨン

Pattern

pattern of slope 8/5

- Pattern
- DSS

- Pattern
- DSS

DSS of slope 8/5

- Pattern
- DSS
- Convex digital object

Convex digital object

Perspectives

New linear-time and output-sensitive algorithms to compute geometrical structures from specific sets of lattice points.

- study more geometrical structures:
 - Delaunay triangulation, Voronoï diagram
 - α-hull, α-shape
 - medial axis, skeleton
- study other sets:
 - patterns, DSSs
 - convex digital objects
 - two consecutive maximal segments
 - convex digital boundaries

C'est fini!

・ロト・4日ト・モト・モー シへの