L!̣ỉis

Delaunay properties of digital straight segments

Tristan Roussillon ${ }^{1}$ and Jacques-Olivier Lachaud ${ }^{2}$

${ }^{1}$ LIRIS, University of Lyon
${ }^{2}$ LAMA, University of Savoie

April 6, 2011

Outline

Definitions: patterns and Delaunay triangulation

Observation: Delaunay triangulation of patterns?

Characterization: proof

Conclusion: new output-sensitive algorithms

Digital straight line (DSL)

Standard DSL

The points (x, y) $\in \mathbb{Z}^{2}$ verifying $\mu \leq a x-b y<\mu+|a|+|b|$ belong to the standard $\operatorname{DSL} D(a, b, \mu)$ of slope $\frac{a}{b}$ and intercept $\mu(a, b, \mu \in \mathbb{Z}$ and $\operatorname{pgcd}(a, b)=1)$.

Example: $D(2,5,-6)$

Pattern

- a pattern is a connected subset of a DSL between two consecutive upper leaning points

Example: pattern $U U^{\prime}$

Pattern

- a pattern is a connected subset of a DSL between two consecutive upper leaning points
- its staircase representation is the polygonal line linking the points in order

Example: pattern $U U^{\prime}$

Pattern

- a pattern is a connected subset of a DSL between two consecutive upper leaning points
- its staircase representation is the polygonal line linking the points in order
- its chain code is a Christoffel word

Example: pattern $U U^{\prime}$

Delaunay triangulation

Triangulation of a finite set of points \mathcal{S}
Partition of the convex hull of \mathcal{S} into triangular facets, whose vertices are points of \mathcal{S}.

Delaunay condition
The interior of the circumcircle of each triangular facet does not contain any point of \mathcal{S}.

always exists and is unique (without 4 cocircular points)

Delaunay triangulation of patterns

Pattern of slope 5/9

Delaunay triangulation of patterns

Pattern of slope 5/8

Delaunay triangulation of patterns

Pattern of slope 2/5

Three remarks

1. the Delaunay triangulation of $U U^{\prime}$ contains the staircase representation of $U U^{\prime}$.

Pattern of slope 4/7

Three remarks

1. the Delaunay triangulation of $U U^{\prime}$ contains the staircase representation of $U U^{\prime}$.
2. U, U^{\prime} and the closest point of $U U^{\prime}$ to $\left[U U^{\prime}\right]$ (Bezout point) define a facet.

Pattern of slope 4/7

Three remarks

1. the Delaunay triangulation of $U U^{\prime}$ contains the staircase representation of $U U^{\prime}$.
2. U, U^{\prime} and the closest point of $U U^{\prime}$ to $\left[U U^{\prime}\right]$ (Bezout point) define a facet.
3. the Delaunay triangulation of some patterns contains the Delaunay triangulation of subpatterns.

Pattern of slope 4/7

Dividing the triangulation (remark 1)

- The convex hull of UU' is divided into a upper part $\mathcal{H}^{+}\left(U U^{\prime}\right)$ and a lower part $\mathcal{H}^{-}\left(U U^{\prime}\right)$.

Pattern of slope 4/7

Dividing the triangulation (remark 1)

- The convex hull of UU' is divided into a upper part $\mathcal{H}^{+}\left(U U^{\prime}\right)$ and a lower part $\mathcal{H}^{-}\left(U U^{\prime}\right)$.
- The Delaunay triangulation of UU' is divided into a upper part $\mathcal{T}^{+}\left(U U^{\prime}\right)$ and a lower part $\mathcal{T}^{-}\left(U U^{\prime}\right)$.

Pattern of slope 4/7

Main facet of a pattern (remark 2)

Main facet $=$ triangle $U B U^{\prime}$

Let B the Bezout point of $U U^{\prime}$ and let

- $\left[q_{0} ; \ldots, q_{i}, \ldots, q_{n}\right]$ (with $q_{n}>1$) be the quotients and
- $\left(b_{0}, a_{0}\right), \ldots,\left(b_{i}, a_{i}\right), \ldots,\left(b_{n}, a_{n}\right)$ be the convergent vectors of the continued fraction expansion of $\frac{a}{b}$.

$$
\overrightarrow{U U^{\prime}}=\overrightarrow{U B}+\overrightarrow{B U^{\prime}}=\left(b_{n}, a_{n}\right)+\left(\left(q_{n}-1\right)\left(b_{n}, a_{n}\right)+\left(b_{n-1}, a_{n-1}\right)\right)
$$

Equivalent to the splitting formula [Voss, 1993] only expressed in terms of quotients.

Set of facets of a pattern (remark 3)

$U B$ and $B U^{\prime}$ are both patterns their chain code are Christoffel words

- other facets defined by induction
- geometrical characterization (Bezout point)

- combinatorial characterization (splitting formula)
$0 \quad 0110 \quad 0101$

Set of facets of a pattern (remark 3)

$U B$ and $B U^{\prime}$ are both patterns their chain code are Christoffel words

- other facets defined by induction
- geometrical characterization (Bezout point)

- combinatorial characterization (splitting formula)
$0|01| 0 \quad 01 \mid 01$

Set of facets of a pattern (remark 3)

$U B$ and $B U^{\prime}$ are both patterns their chain code are Christoffel words

- other facets defined by induction
- geometrical characterization (Bezout point)

- combinatorial characterization (splitting formula)

0 | olilo | 0|1|0|1

Main result

Theorem

The facets $\mathcal{F}\left(U U^{\prime}\right)$ of the pattern $U U^{\prime}$ is a triangulation of $\mathcal{H}^{+}\left(U U^{\prime}\right)$ such that each facet has points of $U U^{\prime}$ as vertices and satisfies the Delaunay property, i.e. $\mathcal{F}\left(U U^{\prime}\right)=\mathcal{T}^{+}\left(U U^{\prime}\right)$.
the (upper part of the) Delaunay triangulation of a pattern is characterized by the continued fraction expansion of its slope

Sketch of the proof

We have to show that:

1. the set of facets $\mathcal{F}\left(U U^{\prime}\right)$ is a triangulation of $\mathcal{H}^{+}\left(U U^{\prime}\right)$ (easy part)
2. the interior of the circumcircle of each facet of $\mathcal{F}\left(U U^{\prime}\right)$ does not contain any point of $U U^{\prime}$ (let us focus on that part)

Lemma 1

Let \mathcal{D} be a disk whose boundary passes through U and U^{\prime} and whose center is located above $\left(U U^{\prime}\right)$. The interior of \mathcal{D} contains a lattice point below or on $\left(U U^{\prime}\right)$ if and only if it contains (at least) B, the Bezout point of $U U^{\prime}$.

Lemma 1

Let \mathcal{D} be a disk whose boundary passes through U and U^{\prime} and whose center is located above $\left(U U^{\prime}\right)$. The interior of \mathcal{D} contains a lattice point below or on $\left(U U^{\prime}\right)$ if and only if it contains (at least) B, the Bezout point of $U U^{\prime}$.

Lemma 1

Let \mathcal{D} be a disk whose boundary passes through U and U^{\prime} and whose center is located above $\left(U U^{\prime}\right)$. The interior of \mathcal{D} contains a lattice point below or on $\left(U U^{\prime}\right)$ if and only if it contains (at least) B, the Bezout point of $U U^{\prime}$.

Lemma 2

Let \mathcal{D} be a disk whose boundary $\partial \mathcal{D}$ is the circumcircle of $U B U^{\prime}$. The interior of \mathcal{D} contains none of the background points of $U U^{\prime}$ (lattice points below straight lines $(U B)$ or $\left(B U^{\prime}\right)$).

Applying lemma 2 by induction over all the facets

The background points of $U U^{\prime}$ (which contains $U U^{\prime}$) are contained in the background points of $U B$ (and $B U^{\prime}$).

Applying lemma 2 by induction over all the facets

The background points of $U U^{\prime}$ (which contains $U U^{\prime}$) are contained in the background points of $U B$ (and $B U^{\prime}$).

Applying lemma 2 by induction over all the facets

The background points of $U U^{\prime}$ (which contains $U U^{\prime}$) are contained in the background points of $U B$ (and $B U^{\prime}$).

Outline

Definitions: patterns and Delaunay triangulation

Observation: Delaunay triangulation of patterns?

Characterization: proof

Conclusion: new output-sensitive algorithms

Delaunay triangulation computation

- Pattern
pattern of slope 8/5

Delaunay triangulation computation

- Pattern
pattern of slope 8/5

Delaunay triangulation computation

- Pattern
pattern of slope 8/5

Delaunay triangulation computation

- Pattern
pattern of slope 8/5

Delaunay triangulation computation

- Pattern
pattern of slope 8/5

Delaunay triangulation computation

- Pattern
- DSS

DSS of slope 8/5

Delaunay triangulation computation

- Pattern
- DSS

DSS of slope 8/5

Delaunay triangulation computation

- Pattern
- DSS

DSS of slope 8/5

Delaunay triangulation computation

- Pattern
- DSS

DSS of slope $8 / 5$

Delaunay triangulation computation

- Pattern
- DSS

DSS of slope 8/5

Delaunay triangulation computation

- Pattern
- DSS

DSS of slope 8/5

Delaunay triangulation computation

- Pattern
- DSS
- Convex digital object

Convex digital object

Perspectives

New linear-time and output-sensitive algorithms to compute geometrical structures from specific sets of lattice points.

- study more geometrical structures:
- Delaunay triangulation, Voronoï diagram
- α-hull, α-shape
- medial axis, skeleton
- study other sets:
- patterns, DSSs
- convex digital objects
- two consecutive maximal segments
- convex digital boundaries

C'est fini!

