Metric bases for polyhedral gauges

Fabien REBATEL, Édouard THIEL

Laboratoire d'Informatique Fondamentale de Marseille Université de la Méditerranée

DGCI 2011, April 6-8, Nancy, France

1 Introduction

- 2 Metric bases in infinite space
- Metric bases in rectangles
 - 4 Conclusion

æ

イロト イ団ト イヨト イヨト

- Problematic
- State of art
- A few recalls
- 2 Metric bases in infinite space
- 3 Metric bases in rectangles

4 Conclusion

æ

イロト イヨト イヨト イヨト

Problematic

Metric bases

Let (W, d) be a metric space.

2

イロト イヨト イヨト イヨト

Metric bases

Let (W, d) be a metric space. A subset $S \subseteq W$ is a **resolving set** for W if d(x, p) = d(y, p) for all $p \in S$ implies x = y.

___ ▶

i

Metric bases

Let (W, d) be a metric space.

A subset $S \subseteq W$ is a **resolving set** for W if d(x, p) = d(y, p) for all $p \in S$ implies x = y.

A metric basis is a resolving set of minimal cardinality #S, named the metric dimension of (W, d).

i

In graph theory

F.Harary and R.Melter in 1976 :

- metric dimension for paths, complete graphs, and some other classes of graphs,
- an algorithm for computing metric bases in trees.

S.Khuller, B.Raghavachari and A.Rosenfeld in 1996 :

- an efficient algorithm for computing metric bases for trees (in linear time),
- finding metric dimension for an arbitrary graph is NP-hard,
- approximated algorithm factor $O(\log n)$ for arbitrary graphs.

5 / 25

- 4 同 1 4 回 1 4 回 1

In continuous geometry

R.Melter and I.Tomescu in 1986 :

- 3 non collinear points form a metric basis for the Euclidean distance in the plane,
- no finite basis for d_1 and d_∞ in the plane,
- the dimension for d_1 in a rectangle is 2,
- the dimension for d_{∞} in a square is 3.

G.Chartrand, P.Zhang and G.Salehi in 1998, 2000 and 2001 :

- Partition dimension problem.
- Forcing subset problem.

Our aim

Study metric basis for usual discrete distances (chamfer norms).

イロト イヨト イヨト イヨト

Our aim

Study metric basis for usual discrete distances (chamfer norms).

First step

Study **polyhedral gauges** which are the \mathbb{R}^n generalization of chamfer Norms.

Definition

Given a convex C containing the origin O in its interior, a **gauge** for C is the function $\gamma_C(x)$ defined by the minimum positive scale factor λ , necessary for having $x \in \lambda C$.

Our aim

Study metric basis for usual discrete distances (chamfer norms).

First step

Study **polyhedral gauges** which are the \mathbb{R}^n generalization of chamfer Norms.

Definition

Given a convex C containing the origin O in its interior, a **gauge** for C is the function $\gamma_{\mathcal{C}}(x)$ defined by the minimum positive scale factor λ , necessary for having $x \in \lambda C$.

7 / 25

- **(())) (())) ()) ()) ()) ()) ()) ()) ()) ()) ()) ()) ()) ()) ()) ()) ()) ()) ()) () ()) ()() ()**

Our aim

Study metric basis for usual discrete distances (chamfer norms).

First step

Study **polyhedral gauges** which are the \mathbb{R}^n generalization of chamfer Norms.

Definition

Given a convex C containing the origin O in its interior, a **gauge** for C is the function $\gamma_{\mathcal{C}}(x)$ defined by the minimum positive scale factor λ , necessary for having $x \in \lambda C$.

7 / 25

Our aim

Study metric basis for usual discrete distances (chamfer norms).

First step

Study **polyhedral gauges** which are the \mathbb{R}^n generalization of chamfer Norms.

Definition

Given a convex C containing the origin O in its interior, a **gauge** for C is the function $\gamma_{\mathcal{C}}(x)$ defined by the minimum positive scale factor λ , necessary for having $x \in \lambda C$.

Introduction

3 Metric bases in rectangles

4 Conclusion

E

イロト イ団ト イヨト イヨト

In the continuous space \mathbb{R}^n

R.Melter and I.Tomescu (1986)

There are no metric basis for d_1 and d_∞ in the plane.

Theorem

There are no metric bases for polyhedral gauges in \mathbb{R}^n .

Proof Idea

- In any polyhedral cone, it always exists at least two points which have the same distance to the origin.
- The intersection between a finite number of similar polyhedral cones is always an unbounded and non empty polyhedron.

In the continuous space \mathbb{R}^n

R.Melter and I.Tomescu (1986)

There are no metric basis for d_1 and d_∞ in the plane.

Theorem

There are no metric bases for polyhedral gauges in \mathbb{R}^n .

Proof Idea

- In any polyhedral cone, it always exists at least two points which have the same distance to the origin.
- The intersection between a finite number of similar polyhedral cones is always an unbounded and non empty polyhedron.

< ロ > < 同 > < 回 > < 回 > < 回

In the continuous space \mathbb{R}^n

R.Melter and I.Tomescu (1986)

There are no metric basis for d_1 and d_∞ in the plane.

Theorem

There are no metric bases for polyhedral gauges in \mathbb{R}^n .

Proof Idea

- In any polyhedral cone, it always exists at least two points which have the same distance to the origin.
- The intersection between a finite number of similar polyhedral cones is always an unbounded and non empty polyhedron.

9 / 25

▲ □ ► ▲ □ ► ▲

Proof idea 1 - Influence cones in polyhedral gauges

Splitting the space into cones

Measuring distances to a point x in a polyhedral cone (O, p_1, p_2) .

Proof idea 1 - Influence cones in polyhedral gauges

Splitting the space into cones

If an other point y belongs to f' then $d_{\mathcal{C}}(O, x) = d_{\mathcal{C}}(O, y)$

Proof idea 1 - Influence cones in polyhedral gauges

Splitting the space into cones

Every points z of f' have the same distance $d_{\mathcal{C}}(O, z)$.

Proof idea 2 - Intersections of cones

Lemma

Intersection between two translated polyhedral cones is an unbounded and non empty area.

Proof idea 2 - Intersections of cones

Lemma extended

The previous lemma remain valid for any number of cones.

In the discrete space \mathbb{Z}^n

Does our theorem remains valid in \mathbb{Z}^n ?

- Yes, if the gauge is rational;
- No, in the other cases.

Why ?

in \mathbb{Z}^n a line may intersect a single point.

イロト イヨト イヨト イヨト

In the discrete space \mathbb{Z}^n

Does our theorem remains valid in \mathbb{Z}^n ?

- Yes, if the gauge is rational;
- No, in the other cases.

Why ?

in \mathbb{Z}^n a line may intersect a single point.

イロト イヨト イヨト イヨト

In the discrete space \mathbb{Z}^n

Does our theorem remains valid in \mathbb{Z}^n ?

- Yes, if the gauge is rational;
- No, in the other cases.

Why?

in \mathbb{Z}^n a line may intersect a single point.

For instance, in \mathbb{Z}^2 , if a line L: y = Ax + B intersects two points $z_1 = (x_1, y_1)$ and $z_2 = (x_2, y_2)$, then $A = \frac{(y_2 - y_1)}{(x_2 - x_1)}$. So $A \in \mathbb{Q}$.

12 / 25

Example of non-rational gauge

The slope of the red facet is $\frac{1}{\sqrt{2}-1} \notin \mathbb{Q}.$

Non-rational faces Each facet of this gauge has a non-rational slope. Image: Constraint of this gauge has n

Chamfer distances

A Chamfer mask \mathcal{M} in \mathbb{Z}^n is a central-symmetric set $\mathcal{M} = \{(\vec{v_i}, w_i) \in \mathbb{Z}^n \times \mathbb{Z}_{+*}\}_{1 \leq i \leq m}$ where:

- $(\vec{v_i}, w_i)$ is called elementary displacement,
- $\vec{v_i}$ is a non null **vector** and
- w_i is a positive weights associated to $\vec{v_i}$.

Chamfer distance in \mathbb{Z}^n

$$d_{\mathcal{M}}(p,q) = \min\left\{\sum \lambda_{i}w_{i} : \sum \lambda_{i}\vec{v_{i}} = \vec{pq} , \ 1 \leqslant i \leqslant m, \ \lambda_{i} \in \mathbb{Z}_{+}\right\} .$$
(1)

Chamfer distance in \mathbb{R}^n

$$d_{\mathcal{M}}^{\mathbb{R}}(p,q) = \min\left\{\sum \lambda_{i} w_{i} : \sum \lambda_{i} \vec{v_{i}} = \vec{pq} , \ 1 \leqslant i \leqslant m, \ \lambda_{i} \in \mathbb{R}_{+}\right\} .$$
(2)

14 / 25

イロト イヨト イヨト イヨト

Chamfer distances

A Chamfer mask \mathcal{M} in \mathbb{Z}^n is a central-symmetric set $\mathcal{M} = \{(\vec{v_i}, w_i) \in \mathbb{Z}^n \times \mathbb{Z}_{+*}\}_{1 \leq i \leq m}$ where:

- $(\vec{v_i}, w_i)$ is called **elementary displacement**,
- $\vec{v_i}$ is a non null **vector** and
- w_i is a positive weights associated to $\vec{v_i}$.

Chamfer distance in \mathbb{Z}^n

$$d_{\mathcal{M}}(p,q) = \min\left\{\sum \lambda_{i} w_{i} : \sum \lambda_{i} \vec{v_{i}} = \vec{pq} , \ 1 \leqslant i \leqslant m, \ \lambda_{i} \in \mathbb{Z}_{+}\right\} .$$
(1)

Chamfer distance in \mathbb{R}^n

$$d_{\mathcal{M}}^{\mathbb{R}}(p,q) = \min\left\{\sum \lambda_{i} w_{i} : \sum \lambda_{i} \vec{v_{i}} = \vec{pq} , \ 1 \leqslant i \leqslant m, \ \lambda_{i} \in \mathbb{R}_{+}\right\} .$$
(2)

14 / 25

Chamfer norms in \mathbb{Z}^n

Chamfer norms in \mathbb{R}^n

Chamfer norms in \mathbb{R}^n = polyhedral gauges for their unit balls.

Chamfer norms in \mathbb{Z}^n

In \mathbb{Z}^n , chamfer norms = gauss discretization of chamfer norms in \mathbb{R}^n

Corollary

There is no metric basis in \mathbb{Z}^n for chamfer norms.

15 / 25

<ロト < 回 > < 回 > < 回 > < 回 >

Chamfer norms in \mathbb{Z}^n

Chamfer norms in \mathbb{R}^n

Chamfer norms in \mathbb{R}^n = polyhedral gauges for their unit balls.

Chamfer norms in \mathbb{Z}^n

In \mathbb{Z}^n , chamfer norms = gauss discretization of chamfer norms in \mathbb{R}^n

Corollary

There is no metric basis in \mathbb{Z}^n for chamfer norms.

15 / 25

<ロト < 回 > < 回 > < 回 > < 回 >

Chamfer norms in \mathbb{Z}^n

Chamfer norms in \mathbb{R}^n

Chamfer norms in \mathbb{R}^n = polyhedral gauges for their unit balls.

Chamfer norms in \mathbb{Z}^n

In \mathbb{Z}^n , chamfer norms = gauss discretization of chamfer norms in \mathbb{R}^n

Corollary

There is no metric basis in \mathbb{Z}^n for chamfer norms.

15 / 25

(日) (同) (三) (三)

Introduction

2) Metric bases in infinite space

3 Metric bases in rectangles

- \bullet Gauges of metric dimension 2 in \mathbb{R}^2
- \bullet Gauges of metric dimension 2 in \mathbb{Z}^2
- \bullet Gauges with higher dimension in \mathbb{Z}^2

Conclusion

Basis points on the frontier

Lemma

If the metric dimension of a gauge is 2 then both points of the bases are placed on the frontier of the rectangle.

Proof illustration

The red points i_1 and i_2 have the same base coordinates. $(\{b_1\}, \{b_2\})$ is not a resolving set.

F.Rebatel, É.Thiel (LIF - Univ. Aix-Marseille)

Metric bases for polyhedral gauges

Basis points on the frontier

Lemma

If the metric dimension of a **polyhedral** gauge is 2 and the points b_1 and b_2 are on the same edge e, then they are both corners.

Proof illustration

The points on the red bolded line have the same basse coordinates. $(\{b_1\}, \{b_2\})$ is not a resolving set.

F.Rebatel, É.Thiel (LIF - Univ. Aix-Marseille)

Metric bases for polyhedral gauges

Grid symmetric gauges

Lemma

Suppose that $\gamma_{\mathcal{C}}$ is a **grid-symmetric**^a gauge. If \mathcal{C} does not contain any vertical nor horizontal facet, then the metric dimension of $(r, d_{\mathcal{C}})$ is 2.

^aAxis and diagonal symmetries

Proof idea

Curves C_1 and C_2 are strictly monotonic. Intersection is at most a single point *i*. $(\{b_1\}, \{b_2\})$ is a metric basis for *r*.

F.Rebatel, É.Thiel (LIF - Univ. Aix-Marseille)

Metric bases for polyhedral gauges

DGCI 2011, April 6-8, Nancy, France

Metric dimension of Minkowski distances in a rectangle

Definition

The *p*-Minkowski distance is given by
$$d_{
ho} = \sqrt[p]{\sum_{i=0}^n |x_i|^{
ho}}$$

Corollary

The metric dimension in a rectangle for any finite Minkowski distances (except d_{∞}) is 2.

20 / 25

イロト イヨト イヨト イヨト

Metric dimension of Minkowski distances in a rectangle

Definition

The *p*-Minkowski distance is given by
$$d_p = \sqrt[p]{\sum_{i=0}^n |x_i|^p}$$

The sole distance having a vertical or horizontal face if d_{∞} , thus

Corollary

The metric dimension in a rectangle for any finite Minkowski distances (except d_{∞}) is 2.

20 / 25

Candidate basis points

d_∞ gauge in a rectangle

800	BaseMet 3
Mask1	d8_21.nmask
Out	tmp1.npz Sa
DTrad	256 Bbox Rays Params DBUF Qu

F.Rebatel, É.Thiel (LIF - Univ. Aix-Marseille)

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

i

22 / 25

d_∞ gauge in a rectangle

800	BaseMet 3
Mask1	d8_21.nmask]
Out	tmp1.npz Sa
DTrad	256 - Bbox - Rays - Params - DBUF Qu

F.Rebatel, É.Thiel (LIF - Univ. Aix-Marseille)

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

i

22 / 25

d_∞ gauge in a rectangle

800	BaseMet 3	
Mask1	d8_21.nmask	
Out	tmp1.npz	Sa
DTrad	256 Bbox Rays Params DBUF	Qu

F.Rebatel, É.Thiel (LIF - Univ. Aix-Marseille)

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

i

22 / 25

d_{∞} gauge in a rectangle

F.Rebatel, É.Thiel (LIF - Univ. Aix-Marseille)

<ロ> (日) (日) (日) (日) (日)

3

i

d_{∞} gauge in a rectangle

Conjecture

For a $a \times b$ rectangle, we have conjectured the metric dimension by :

• $b = 1 \implies \mathbf{1}$

•
$$b = a > 1 \Longrightarrow 2$$

•
$$a > b > 1 \Longrightarrow (2 + \lfloor \frac{a-2}{b-1} \rfloor)$$

Extreme case

If the rectangle have 2 as height or width, the metric basis will be half points of the rectangle.

22 / 25

Chamfer norm $\langle 3, 4, 6 \rangle$ in a rectangle

i

23 / 25

Chamfer norm $\langle 3, 4, 6 \rangle$ in a rectangle

i

Chamfer norm $\langle 3,4,6\rangle$ in a rectangle

i

Chamfer norm $\langle 3, 4, 6 \rangle$ in a rectangle

i

Introduction

- 2 Metric bases in infinite space
- 3 Metric bases in rectangles

2

イロト イヨト イヨト イヨト

Conclusion

Our contributions :

- polyhedral gauges do not have finites bases in \mathbb{R}^n ,
- the same holds for rational gauges in \mathbb{Z}^n (Chamfer Norms),
- some \mathbb{R}^n properties disappear in \mathbb{Z}^n ,
- characterization of gauges which have 2 for metric dimension in a rectangle.

25 / 25

(日) (同) (三) (三)

Conclusion

Our contributions :

- polyhedral gauges do not have finites bases in \mathbb{R}^n ,
- the same holds for rational gauges in \mathbb{Z}^n (Chamfer Norms),
- some \mathbb{R}^n properties disappear in \mathbb{Z}^n ,
- characterization of gauges which have 2 for metric dimension in a rectangle.

Future prospects :

- Higher dimensions,
- Rectangles, convex or non-convex polyhedrons with direct and geodesic distances.
- Linked problems of forcing subsets and partition dimensions.

25 / 25