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Laboratoire d’Informatique Fondamentale de Marseille
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Introduction Problematic

Metric bases
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Let (W , d) be a metric space.
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Let (W , d) be a metric space.
A subset S ⊆ W is a resolving set for W if d(x , p) = d(y , p) for all p ∈ S
implies x = y .
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Let (W , d) be a metric space.
A subset S ⊆ W is a resolving set for W if d(x , p) = d(y , p) for all p ∈ S
implies x = y .
A metric basis is a resolving set of minimal cardinality #S , named the metric

dimension of (W , d).
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Introduction State of art

In graph theory

F.Harary and R.Melter in 1976 :

metric dimension for paths, complete graphs, and some other classes of
graphs,

an algorithm for computing metric bases in trees.
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14

S.Khuller, B.Raghavachari and A.Rosenfeld in 1996 :

an efficient algorithm for computing metric bases for trees (in linear time),

finding metric dimension for an arbitrary graph is NP-hard,

approximated algorithm factor O(log n) for arbitrary graphs.
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Introduction State of art

In continuous geometry

R.Melter and I.Tomescu in 1986 :

3 non collinear points form a metric basis for the
Euclidean distance in the plane,

no finite basis for d1 and d∞ in the plane,

the dimension for d1 in a rectangle is 2,

the dimension for d∞ in a square is 3.

S2

S3

S1

G.Chartrand, P.Zhang and G.Salehi in 1998, 2000 and 2001 :

Partition dimension problem.

Forcing subset problem.
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Introduction A few recalls

Our aim

Study metric basis for usual discrete distances (chamfer norms).

First step

Study polyhedral gauges which are the Rn generalization of chamfer Norms.

Definition
Given a convex C containing the origin
O in its interior, a gauge for C is the
function γC(x) defined by the minimum
positive scale factor λ, necessary for
having x ∈λC.
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F.Rebatel, É.Thiel (LIF - Univ. Aix-Marseille) Metric bases for polyhedral gauges DGCI 2011, April 6-8, Nancy, France 7 / 25



Introduction A few recalls

Our aim

Study metric basis for usual discrete distances (chamfer norms).

First step

Study polyhedral gauges which are the Rn generalization of chamfer Norms.

Definition
Given a convex C containing the origin
O in its interior, a gauge for C is the
function γC(x) defined by the minimum
positive scale factor λ, necessary for
having x ∈λC.

C ′

x

O

C
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Metric bases in infinite space In the continuous space R
n

In the continuous space Rn

R.Melter and I.Tomescu (1986)

There are no metric basis for d1 and d∞ in the plane.

Theorem

There are no metric bases for polyhedral gauges in Rn.

Proof Idea
1 In any polyhedral cone, it always exists at least two points which have the

same distance to the origin.

2 The intersection between a finite number of similar polyhedral cones is always
an unbounded and non empty polyhedron.
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Metric bases in infinite space In the continuous space R
n

Proof idea 1 - Influence cones in polyhedral gauges

x

O

p6

p2
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p3p4

p1

p1

f f ′

x ′

p2

x

c

C

C′
O

Splitting the space into cones

Measuring distances to a point x in a polyhedral cone (O, p1, p2).
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Splitting the space into cones

If an other point y belongs to f ′ then dC(O, x) = dC(O, y)
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Metric bases in infinite space In the continuous space R
n

Proof idea 1 - Influence cones in polyhedral gauges
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z

Splitting the space into cones

Every points z of f ′ have the same distance dC(O, z).
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Metric bases in infinite space In the continuous space R
n

Proof idea 2 - Intersections of cones

Lemma
Intersection between two translated polyhedral cones is an unbounded and non
empty area.

b1

b2

O

f2

cf

y

x
f1

=⇒ x and y have same coordinates.
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Metric bases in infinite space In the continuous space R
n

Proof idea 2 - Intersections of cones

Lemma extended
The previous lemma remain valid for any number of cones.

b1

b2

O
cf

b3

x
y

=⇒ x and y have same coordinates.
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Metric bases in infinite space In the discrete space Z
n

In the discrete space Zn

Does our theorem remains valid in Zn?

Yes, if the gauge is rational;

No, in the other cases.

Why ?

in Zn a line may intersect a single point.
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Metric bases in infinite space In the discrete space Z
n

In the discrete space Zn

Does our theorem remains valid in Zn?

Yes, if the gauge is rational;

No, in the other cases.

Why ?

in Zn a line may intersect a single point.

For instance, in Z2, if a line L : y = Ax + B intersects two points z1 = (x1, y1)

and z2 = (x2, y2), then A = (y2−y1)
(x2−x1)

. So A ∈ Q.
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Metric bases in infinite space In the discrete space Z
n

Example of non-rational gauge

(1; 0)

(0; 1)

(
√
2
2
;
√
2
2
)

The slope of the red facet is
1

√

2
2 −1

/∈ Q.

Non-rational faces
Each facet of this gauge has a non-rational slope.
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Metric bases in infinite space In the discrete space Z
n

Chamfer distances

A Chamfer mask M in Zn is a central-symmetric set
M = {(~vi ,wi) ∈ Zn × Z+∗ }16i6m where:

(~vi ,wi ) is called elementary displacement,

~vi is a non null vector and

wi is a positive weights associated to ~vi .

Chamfer distance in Zn

dM(p, q) = min
{

∑

λiwi :
∑

λi ~vi = ~pq , 1 6 i 6 m, λi ∈ Z+

}

. (1)

Chamfer distance in Rn

dR

M(p, q) = min
{

∑

λiwi :
∑

λi ~vi = ~pq , 1 6 i 6 m, λi ∈ R+

}

. (2)
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Metric bases in infinite space In the discrete space Z
n

Chamfer norms in Zn

Chamfer norms in Rn

Chamfer norms in Rn = polyhedral gauges for their unit balls.

Chamfer norms in Zn

In Zn, chamfer norms = gauss discretization of chamfer norms in Rn

Corollary

There is no metric basis in Zn for chamfer norms.
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Metric bases in rectangles

1 Introduction

2 Metric bases in infinite space
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Gauges of metric dimension 2 in R2
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Metric bases in rectangles Gauges of metric dimension 2 in R
2

Basis points on the frontier

Lemma
If the metric dimension of a gauge is 2 then both points of the bases are placed on
the frontier of the rectangle.

i2
b1

b2

r

i1O

C C1

C2

Proof illustration
The red points i1 and i2 have the same base coordinates.
({b1}, {b2}) is not a resolving set.

F.Rebatel, É.Thiel (LIF - Univ. Aix-Marseille) Metric bases for polyhedral gauges DGCI 2011, April 6-8, Nancy, France 17 / 25



Metric bases in rectangles Gauges of metric dimension 2 in R
2

Basis points on the frontier

Lemma
If the metric dimension of a polyhedral gauge is 2 and the points b1 and b2 are
on the same edge e, then they are both corners.

r

e1

O
p4

p5 C1

C

C2

p6

p1

p2

p3

b2 b1

c2
c1

i1 i2

Proof illustration
The points on the red bolded line have the same basse coordinates.
({b1}, {b2}) is not a resolving set.
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Metric bases in rectangles Gauges of metric dimension 2 in R
2

Grid symmetric gauges

Lemma
Suppose that γC is a grid-symmetrica gauge. If C does not contain any vertical
nor horizontal facet, then the metric dimension of (r , dC) is 2.

aAxis and diagonal symmetries

O

C

i

C2

b2b1

r

C1

Proof idea
Curves C1 and C2 are strictly monotonic. Intersection is at most a single point i .
({b1}, {b2}) is a metric basis for r .
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Metric bases in rectangles Gauges of metric dimension 2 in R
2

Metric dimension of Minkowski distances in a rectangle

Definition

The p-Minkowski distance is given by dp = p

√

∑n

i=0 |xi |
p

Corollary

The metric dimension in a rectangle for any finite Minkowski distances (except
d∞) is 2.
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Metric bases in rectangles Gauges of metric dimension 2 in R
2

Metric dimension of Minkowski distances in a rectangle

Definition

The p-Minkowski distance is given by dp = p

√

∑n

i=0 |xi |
p

The sole distance having a vertical or horizontal face if d∞, thus

Corollary

The metric dimension in a rectangle for any finite Minkowski distances (except
d∞) is 2.
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Metric bases in rectangles Gauges of metric dimension 2 in Z
2

Candidate basis points

Examples for a 20 by 12 rectangle

For the d1 distance (Chamfer mask 〈1, 2〉)

For the Chamfer mask 〈3, 4〉

For the Chamfer mask 〈5, 7, 11〉
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Metric bases in rectangles Gauges with higher dimension in Z
2

d∞ gauge in a rectangle
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Metric bases in rectangles Gauges with higher dimension in Z
2

d∞ gauge in a rectangle

Conjecture

For a a× b rectangle, we have conjectured the metric dimension by :

b = 1 =⇒ 1

b = a > 1 =⇒ 2

a > b > 1 =⇒ (2+ ⌊ a−2
b−1

⌋)

Extreme case
If the rectangle have 2 as height or width, the metric basis will be half points of
the rectangle.
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Metric bases in rectangles Gauges with higher dimension in Z
2

Chamfer norm 〈3, 4, 6〉 in a rectangle
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Conclusion

Conclusion

Our contributions :

polyhedral gauges do not have finites bases in Rn,

the same holds for rational gauges in Zn (Chamfer Norms),

some Rn properties disappear in Zn,

characterization of gauges which have 2 for metric dimension in a rectangle.
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Conclusion

Conclusion

Our contributions :

polyhedral gauges do not have finites bases in Rn,

the same holds for rational gauges in Zn (Chamfer Norms),

some Rn properties disappear in Zn,

characterization of gauges which have 2 for metric dimension in a rectangle.

Future prospects :

Higher dimensions,

Rectangles, convex or non-convex polyhedrons with direct and geodesic
distances.

Linked problems of forcing subsets and partition dimensions.
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