Isthmus-Based 6-Directional Parallel Thinning Algorithms

Benjamin Raynal and Michel Couprie

April 6, 2011

(日) (월) (문) (문) (문)

PKD6 algorithm

D6I1D algorithm

Results

Conclusion 000

Overview

Introduction

PKD6 algorithm

D6I1D algorithm

Results

Conclusion

・ロト ・日 ・ モ ・ モ ・ ・ 日 ・ つへの

PKD6 algorithm 000000

D6I1D algorithm

Results

Conclusion 000

Introduction

PKD6 algorithm 000000 D6I1D algorithm

Results

Conclusion 000

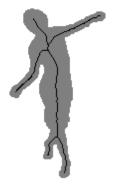
Skeleton?

Blum's grass fire analogy (in 2D):

- imagine the shape as a dry grass field
- set on fire the contour of the field
- meeting points of the flame fronts = *skeleton* of the shape

PKD6 algorithm 000000 D6I1D algorithm

Results

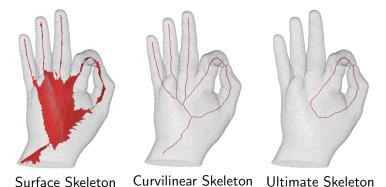

< ロ > < 同 > < 回 > < 回 >

Conclusion 000

Skeleton?

Skeleton properties :

- homotopic to the original object
- thin (lower dimension than the object)
- centered in the original object


PKD6 algorithm

D6I1D algorithm 0000000 Results

Conclusion 000

3D Skeleton

In 3D, 3 kinds of skeletons

Introduction	PKD6 algorithm	D6I1D
0000	000000	00000

D6I1D algorithm 0000000 Results

Conclusion 000

Thinning

Simple point

- point which can be removed without changing the topology
- locally characterized

Introduction
00000

PKD6 algorithm 000000 D6I1D algorithm 0000000 Results

Conclusion 000

Simple point

• point which can be removed without changing the topology

Thinning

locally characterized

Thinning

Iteratively removing simple points, until stability.

Introduction
00000

PKD6 algorithm 000000 D6I1D algorithm 0000000 Results

Conclusion 000

Simple point

• point which can be removed without changing the topology

Thinning

locally characterized

Thinning

Iteratively removing simple points, until stability.

• without $constraints \rightarrow$ ultimate skeleton

PKD6 algorithm 000000 D6I1D algorithm

Results

Conclusion 000

Thinning

Simple point

- point which can be removed without changing the topology
- locally characterized

Thinning

Iteratively removing simple points, until stability.

- without $constraints \rightarrow$ ultimate skeleton
- with $constraints \rightarrow curvilinear$ or surface skeleton

PKD6 algorithm 000000 D6I1D algorithm 0000000

Results

Conclusion 000

Our goal

We are searching for:

- fast thinning algorithm
- skeleton with low amount of noise

PKD6 algorithn

D6I1D algorithm 0000000 Results 00000000

э

Conclusion 000

Thinning strategies

Thinning strategies:

sequential

Details

Only one simple point is removed at each iteration

PKD6 algorithm 000000 D6I1D algorithm 0000000 Results 00000000 Conclusion 000

Thinning strategies

Thinning strategies:

- sequential
- parallel

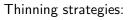
Details

All the simple points with same properties are removed at each iteration

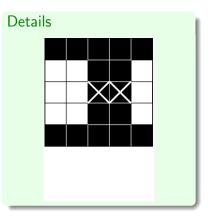
3

PKD6 algorithm

D6I1D algorithm 0000000 Results 00000000 Conclusion 000

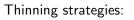

Thinning strategies

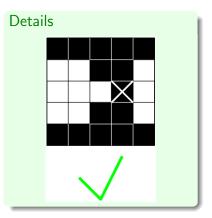
- sequential
- parallel



PKD6 algorithn

D6I1D algorithm 0000000 Results 00000000 Conclusion


- sequential
- parallel

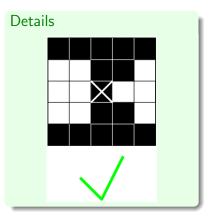

PKD6 algorithn

D6I1D algorithm 0000000 Results 00000000 Conclusion

Thinning strategies

- sequential
- parallel

▲ロト ▲圖ト ▲屋ト ▲屋ト

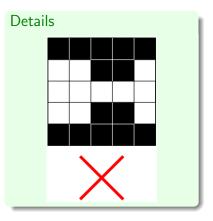

3

PKD6 algorithn

D6I1D algorithm 0000000 Results 00000000 Conclusion

Thinning strategies

- sequential
- parallel

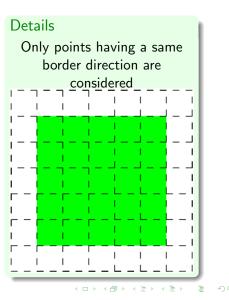


PKD6 algorithn

D6I1D algorithm 0000000 Results 00000000 Conclusion

Thinning strategies

- sequential
- parallel

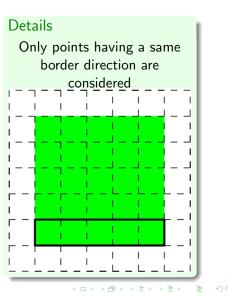

PKD6 algorithr

D6I1D algorithm 0000000 Results

Conclusion 000

Thinning strategies

- sequential
- parallel
 - directional

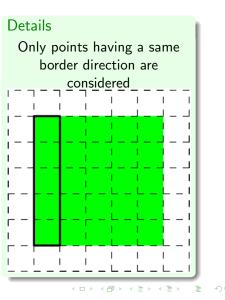

PKD6 algorithr

D6I1D algorithm 0000000 Results

Conclusion 000

Thinning strategies

- sequential
- parallel
 - directional

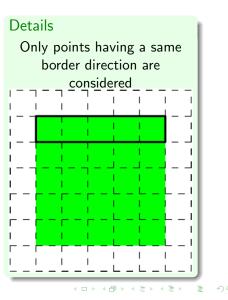

PKD6 algorithm

D6I1D algorithm 0000000 Results

Conclusion 000

Thinning strategies

- sequential
- parallel
 - directional

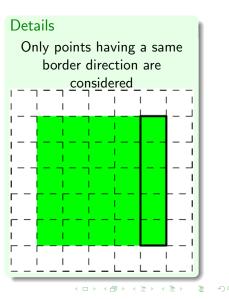

PKD6 algorithr

D6I1D algorithm 0000000 Results

Conclusion 000

Thinning strategies

- sequential
- parallel
 - directional

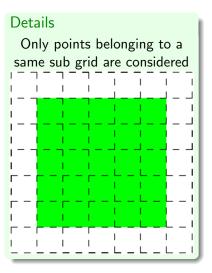

PKD6 algorithr

D6I1D algorithm 0000000 Results

Conclusion 000

Thinning strategies

- sequential
- parallel
 - directional


PKD6 algorithr

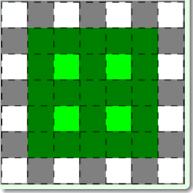
D6I1D algorithm 0000000 Results

Conclusion

Thinning strategies

- sequential
- parallel
 - directional
 - subfield-based

PKD6 algorithr


D6I1D algorithm 0000000 Results 00000000 Conclusion

Thinning strategies

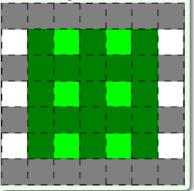
Thinning strategies:

- sequential
- parallel
 - directional
 - subfield-based

Details

PKD6 algorithr

D6I1D algorithm 0000000 Results


Conclusion

Thinning strategies

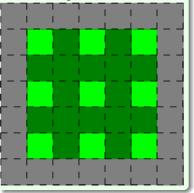
Thinning strategies:

- sequential
- parallel
 - directional
 - subfield-based

Details

PKD6 algorithr

D6I1D algorithm 0000000 Results


Conclusion

Thinning strategies

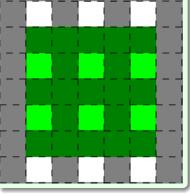
Thinning strategies:

- sequential
- parallel
 - directional
 - subfield-based

Details

PKD6 algorithm

D6I1D algorithm 0000000 Results


Conclusion

Thinning strategies

Thinning strategies:

- sequential
- parallel
 - directional
 - subfield-based

Details

PKD6 algorithm

D6I1D algorithm 0000000 Results 00000000 Conclusion 000

Thinning strategies

Thinning strategies:

- sequential
- parallel
 - directional
 - subfield-based
 - fully parallel

Details

- no sub iterations
- checking use a bigger neighborhood

< ロ > < 同 > < 臣 > < 臣 > -

3

PKD6 algorithm

D6I1D algorithm 0000000 Results

Conclusion

Thinning strategies

- $\bullet \ \text{sequential} \to \text{noisy}$
- parallel
 - directional
 - $\bullet \ \text{subfield-based} \to \text{noisy}$
 - fully parallel

PKD6 algorithm

D6I1D algorithm 0000000 Results

3

Conclusion

Thinning strategies

- $\bullet \ \text{sequential} \to \text{noisy}$
- parallel
 - directional
 - $\bullet \ \text{subfield-based} \to \text{noisy}$
 - fully parallel \rightarrow slow

PKD6 algorithm

D6I1D algorithm 0000000 Results

3

Conclusion

Thinning strategies

- $\bullet \ \text{sequential} \to \text{noisy}$
- parallel
 - directional
 - $\bullet \ \text{subfield-based} \to \text{noisy}$
 - $\bullet \ \ \text{fully parallel} \to \text{slow}$

PKD6 algorithm

0611D algorithm

Results

Conclusion 000

PKD6 algorithm

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▼

D6I1D algorithm 0000000

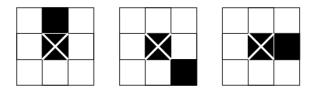
Results 00000000 Conclusion 000

Palágyi and Kuba 6-directional thinning algorithm

PKD6 (Palágyi and Kuba, 1998):

- 6-directional thinning algorithm
- using *ending points* as constraints
- constraint set updated at each sub iteration

PKD6 algorithm 000000 D6I1D algorithm


Results

Conclusion 000

Ending Points

Points ending a curve:

- · locally defined: one and only one neighbor
- sub-case of simple point

PKD6 algorithm 000000 D6I1D algorithm 0000000

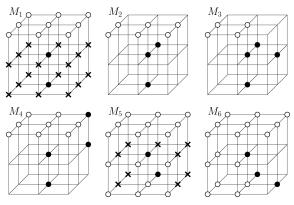
Results

3

Conclusion 000

Particularities of PKD6:

- integrate the ending point preservation in the deletion test
- use of masks for the deletion tests


PKD6 algorithm 000●00 D6I1D algorithm

Results

Conclusion

PKD6

Masks $\mathcal{M}_{\textit{UP}}$ for "UP" direction for detection of removable points

Preserve the topology

Introduction	PKD6 algorithm	D6l1D algorithm	Results	Conclusion
00000	0000€0	0000000	00000000	000
PKD6				

Algorithm input An object $X \subseteq \mathbb{Z}^3$ result A skeleton of X . Do until stability: • for each direction d: • $X = X \setminus \{p \in X; p \text{ matching in } \mathcal{M}_d\}$. return X

Notations

- X : the object
- \mathcal{M}_d : set of masks representing removable points for d

PKD6 algorithm 00000● D6I1D algorithm

Results

・ロト ・部ト ・ヨト ・ヨト

PKD6 algorithm 00000● D6I1D algorithm

Results

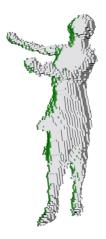
・ロト ・部ト ・ヨト ・ヨト

э

PKD6 algorithm 00000● D6I1D algorithm

Results

・ロト ・部ト ・ヨト ・ヨト



PKD6 algorithm 00000● D6I1D algorithm

Results

・ロト ・部ト ・ヨト ・ヨト

Conclusion 000

PKD6 algorithm 00000● D6I1D algorithm

Results

Conclusion 000

PKD6 algorithm 00000● D6I1D algorithm

Results

Conclusion 000

PKD6 algorithm 00000● D6I1D algorithm

Results

・ロト ・部ト ・ヨト ・ヨト

э

PKD6 algorithm 00000● D6I1D algorithm

Results

◆ロト ◆部 ▶ ◆注 ▶ ◆注 ▶

æ

Conclusion 000

PKD6 algorithn

D6I1D algorithm

Results 00000000 Conclusion 000

Our algorithm: D6I1D

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶

PKD6 algorithm 000000 D6I1D algorithm •000000 Results

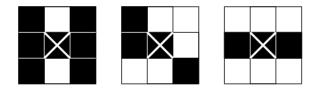
ヘロト ヘ部ト ヘヨト ヘヨト

Conclusion 000

D6I1D

Our new thinning scheme D6I1D:

- 6-directional thinning algorithm (based on PKD6)
- using 1D-isthmus constraints (Bertrand and Couprie, 2007)
- constraint set updated at each iteration


PKD6 algorithm 000000 D6I1D algorithm 000000 Results

Conclusion 000

1D-Isthmuses

1D-isthmus: point which cannot be removed without breaking connectivity of neighborhood.

- locally defined: more than one CC of (object \cap neighborhood)
- non simple point

PKD6 algorithm 000000 D6I1D algorithm 000000

Results

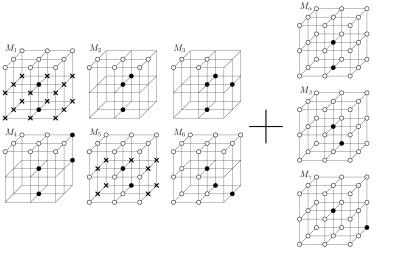
Conclusion 000

D6I1D

Particularities of D6I1D:

- cannot integrate the isthmuses preservation in the deletion test
- use a modification of PKD6 masks for the deletion tests
- use a separate detection of the constraint set

PKD6 algorithm 000000


D6I1D algorithm

Results

Conclusion

D6I1D

Masks $\mathcal{M}'_{\mathit{UP}}$ for "UP" direction for detection of removable points

Notations

- K : set of points which can not be removed
- $\Psi(X)$: set of 1D-isthmuses in X

PKD6 algorithm 000000 D6I1D algorithm

Results

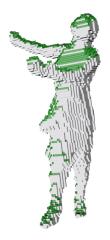
・ロト ・部ト ・ヨト ・ヨト

Conclusion 000

PKD6 algorithm 000000 D6I1D algorithm

Results

・ロト ・部ト ・ヨト ・ヨト


Conclusion 000

PKD6 algorithm 000000 D6I1D algorithm 0000000 Results

・ロト ・部ト ・ヨト ・ヨト

Conclusion 000

PKD6 algorithm 000000 D6I1D algorithm

Results

・ロト ・部ト ・ヨト ・ヨト

Conclusion 000

PKD6 algorithm 000000 D6I1D algorithm 0000000 Results

・ロト ・部ト ・ヨト ・ヨト

Conclusion 000

PKD6 algorithm 000000 D6I1D algorithm 0000000 Results

Conclusion 000

PKD6 algorithm 000000 D6I1D algorithm 0000000 Results

・ロト ・部ト ・ヨト ・ヨト

Conclusion 000

PKD6 algorithm 000000 D6I1D algorithm 0000000 Results

・ロト ・部ト ・ヨト ・ヨト

э

Conclusion 000

PKD6 algorithm 000000 D6I1D algorithm 0000000 Results

・ロト ・部ト ・ヨト ・ヨト

э

Conclusion 000

PKD6 algorithm 000000 D6I1D algorithm 0000000 Results

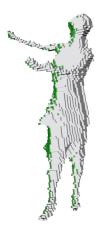
・ロト ・部ト ・ヨト ・ヨト

Conclusion 000

PKD6 algorithm 000000 D6I1D algorithm 0000000 Results

・ロト ・部ト ・ヨト ・ヨト

Conclusion 000



PKD6 algorithm 000000 D6I1D algorithm 0000000 Results

・ロト ・部ト ・ヨト ・ヨト

э

Conclusion 000

PKD6 algorithm 000000 D6I1D algorithm 0000000 Results

Conclusion 000

PKD6 algorithm 000000 D6I1D algorithm 0000000 Results

・ロト ・部ト ・ヨト ・ヨト

э

Conclusion 000

PKD6 algorithm 000000 D6I1D algorithm 0000000 Results

・ロト ・部ト ・ヨト ・ヨト

э

Conclusion 000

PKD6 algorithm 000000 D6I1D algorithm 0000000 Results

・ロト ・部ト ・ヨト ・ヨト

э

Conclusion 000

PKD6 algorithm 000000 D6I1D algorithm 0000000 Results 0000000

◆ロト ◆部 ▶ ◆注 ▶ ◆注 ▶

æ

Conclusion 000

D6I1D

22/37

Introduction	PKD6 algorithm	D611D algorithm	Results	Conclusion
00000	000000	000000●	00000000	000
Variations				

By modifying the constraints of D6I1D, we can obtain other kinds of skeletons:

Introduction	PKD6 algorithm	D6I1D algorithm	Results	Conclusion
00000	000000	000000●	00000000	000
Variations				

By modifying the constraints of D6I1D, we can obtain other kinds of skeletons:

- no constraints \rightarrow ultimate skeleton

Introduction	PKD6 algorithm	D6l1D algorithm	Results	Conclusion
00000	000000	000000●	000000000	000
		Variations		

By modifying the constraints of D6I1D, we can obtain other kinds of skeletons:

- no constraints \rightarrow ultimate skeleton
- 2D-isthmuses (D6I2D) \rightarrow surface skeleton

PKD6 algorithm

D6I1D algorithm 0000000 Results

Conclusion 000

Results

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▼

24/37

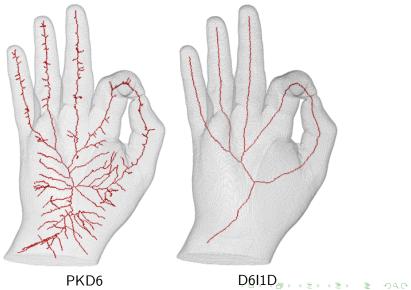
PKD6 algorithm 000000

D6I1D algorithm 0000000 Results •00000000 Conclusion 000

Curvilinear Skeleton with D6I1D

PKD6

D6I1D

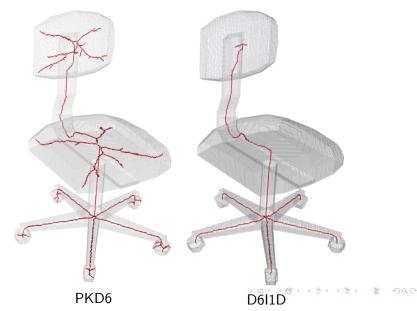

25/37

PKD6 algorithm

Results •00000000

 $\Xi \succ$

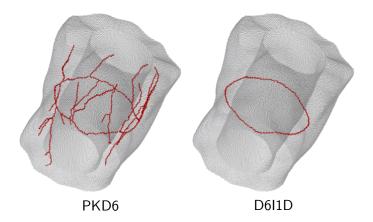
Curvilinear Skeleton with D6I1D



PKD6 algorithm 000000

D6I1D algorithm

Results •00000000 Conclusion 000


Curvilinear Skeleton with D6I1D

PKD6 algorithm 000000

D6I1D algorithm 0000000 Results •00000000 Conclusion

Curvilinear Skeleton with D6I1D

PKD6 algorithm 000000

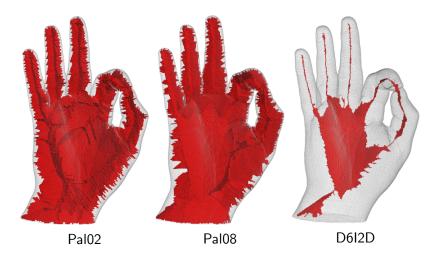
D6I1D algorithm

Results 00000000

Conclusion 000

Surface Skeleton with D6l2D

We compare the results of D6I2D with those obtained from two other thinnings:


Pal02 described by Palagyi in: "A 3-subiteration 3D thinning algorithm for extracting medial surfaces"

Pal08 described by Palagyi in: "A 3D fully parallel surface-thinning algorithm"

PKD6 algorithm 000000

D6I1D algorithm 0000000 Results

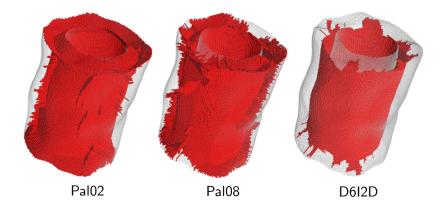
Conclusion 000

PKD6 algorithm 000000

D6I1D algorithm 0000000 Results 000000000 Conclusion 000

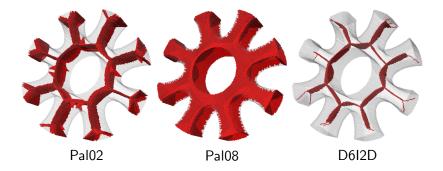
PKD6 algorithm 000000

D6I1D algorithm 0000000 Results


Conclusion 000

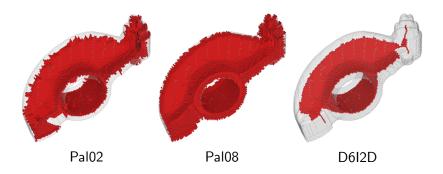
PKD6 algorithm 000000

D6I1D algorithm 0000000 Results


Conclusion 000

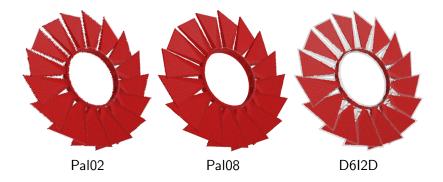
PKD6 algorithm 000000

D6I1D algorithm 0000000 Results


Conclusion 000

PKD6 algorithm 000000

D6I1D algorithm 0000000 Results


Conclusion 000

PKD6 algorithm 000000

D6I1D algorithm 0000000 Results

Conclusion 000

PKD6 algorithm

D6I1D algorithm

Results

Conclusion

Conclusion

34/37

PKD6 algorithn

D6I1D algorithm 0000000

Results

Conclusion •00

Achieved work

We have proposed a new thinning scheme based on isthmuses:

PKD6 algorithn

D6I1D algorithm 0000000

Results

Conclusion •00

Achieved work

We have proposed a new thinning scheme based on isthmuses:

• fast

PKD6 algorithn

D6I1D algorithm 0000000

Results

Conclusion •00

Achieved work

We have proposed a new thinning scheme based on isthmuses:

- fast
- providing different kind of skeletons

PKD6 algorithm 000000 D6I1D algorithm 0000000

Results

ヘロト ヘ部ト ヘヨト ヘヨト

3

Conclusion •00

Achieved work

We have proposed a new thinning scheme based on isthmuses:

- fast
- providing different kind of skeletons
- with good visual aspect preservation

PKD6 algorithm

D6I1D algorithm

Results

Conclusion

Future work

Now we are working on:

PKD6 algorithm

D6I1D algorithm

Results

Conclusion

Future work

Now we are working on:

• speed optimizations

PKD6 algorithm 000000 D6I1D algorithm 0000000 Results

Conclusion 000

Future work

Now we are working on:

- speed optimizations
- design of new constraints

PKD6 algorithm 000000 D6I1D algorithm 0000000 Results

Conclusion 000

Future work

Now we are working on:

- speed optimizations
- design of new constraints
- finding a postdoc position :)

PKD6 algorithm

D6I1D algorithm

Results 00000000 Conclusion

Questions?