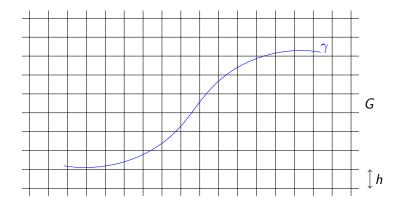
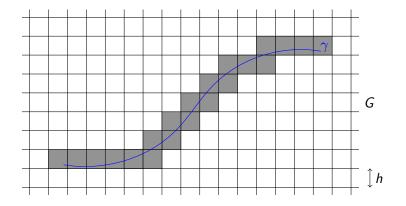
Another definition for digital tangents

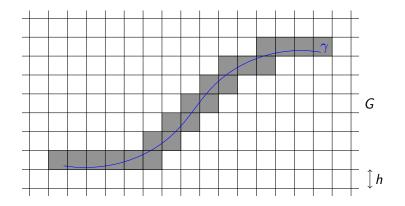
Thierry Monteil

DGCI 2011

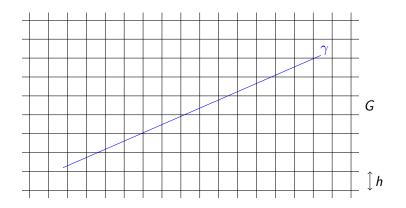
Y







 $F(\gamma, G) = 000001010101001000$



 $w = F(\gamma, G) = 001001001001001001001$

There are three types of characterisations of the codings of digital straight segments, corresponding to three properties of the lines:

• Lines are the curves of constant slope

A word *w* is 1-balanced if $\forall u, v \in Fact(w)$ $|u| = |v| \Rightarrow ||u|_1 - |v|_1| \le 1$

There are three types of characterisations of the codings of digital straight segments, corresponding to three properties of the lines:

Lines are the curves of constant slope

A word *w* is 1-balanced if $\forall u, v \in Fact(w)$ $|u| = |v| \Rightarrow ||u|_1 - |v|_1| \le 1$

► The set of lines is stable under linear maps Multi-scale structure (desubstitution, continued fractions): $w = 0010010001001001001 \mapsto 11011101 \mapsto 00 \mapsto \varepsilon$

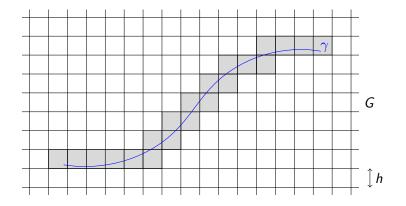
There are three types of characterisations of the codings of digital straight segments, corresponding to three properties of the lines:

Lines are the curves of constant slope

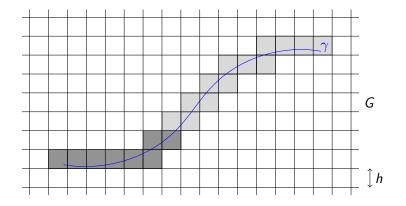
A word *w* is 1-balanced if $\forall u, v \in Fact(w)$ $|u| = |v| \Rightarrow ||u|_1 - |v|_1| \le 1$

- ► The set of lines is stable under linear maps Multi-scale structure (desubstitution, continued fractions): $w = 0010010001001001001 \mapsto 11011101 \mapsto 00 \mapsto \varepsilon$
- Lines are the most predictible curves

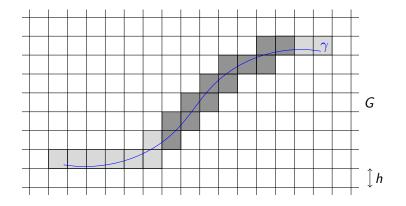
A word w is a *Sturmian factor* if w is a factor of an infinite word with complexity n + 1



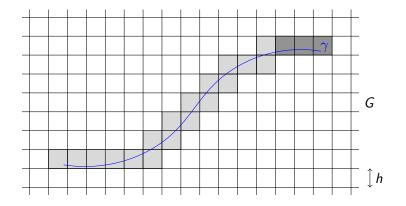
 $F(\gamma, G) = 0000010.10101010010.00$



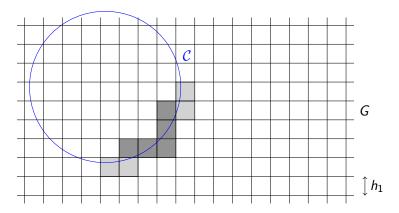
 $F(\gamma, G) = 0000010.101010010.00$



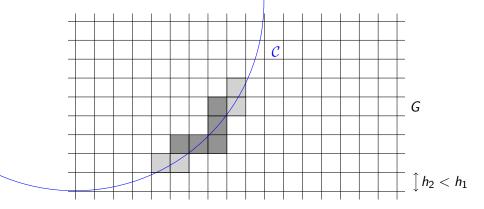
 $F(\gamma, G) = 0000010.10101010010.00$



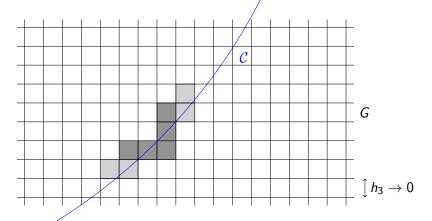
 $F(\gamma, G) = 0000010.101010010.00$



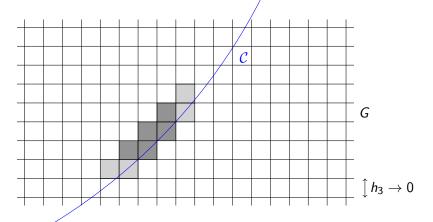
The word 01**0011**01 appears in the coding of a circle for arbitrary small scales but does not correspond to a digital straight segment.



The word 01**0011**01 appears in the coding of a circle for arbitrary small scales but does not correspond to a digital straight segment.



The word 01**0011**01 appears in the coding of a circle for arbitrary small scales but does not correspond to a digital straight segment.



It can be understood as an error on the word 01010101, which corresponds to a digital straight segment.

Tangent words

The aim of this talk is to introduce and describe those words that survive in the coding of a smooth curve when the mesh of th grid goes to 0.

If γ is a smooth curve, we define the tangent words to γ as

$$T(\gamma) = \limsup_{mesh(G)\to 0} L(\gamma, G) = \bigcap_{\varepsilon > 0} \bigcup_{mesh(G) \le \varepsilon} L(\gamma, G),$$

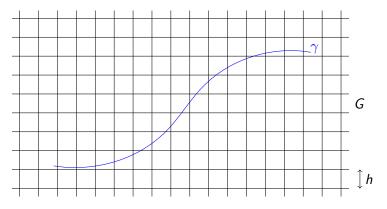
where $L(G, \gamma)$ denotes the set of words appearing in the coding of γ by the grid G.

We denote by T the set of all tangent words obtained for all smooth curves and call them *tangent words*.

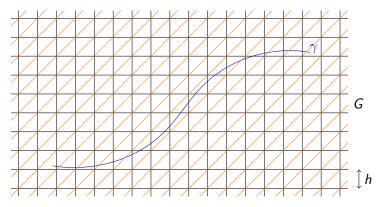
Any coding of a digital straight segment is tangent.

We just saw that the word 0011 is tangent.

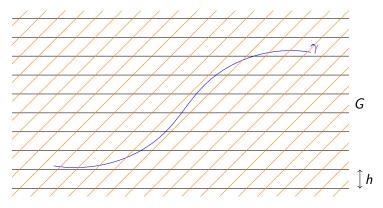
The word 00011 is not tangent.



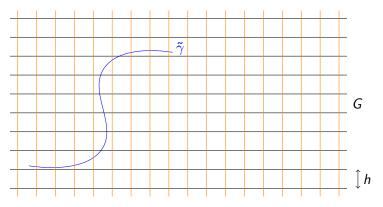
w = 000001010101001000



w = 000001010101010000020202020101010101020102020



w = 00000101010101000020202020101010101020102020 2222111112122



w = 00000101010101000020202020101010101020102020 2222111112122

 $\tilde{w} = 0000111110100$

We removed one letter to each run of the non-isolated letter.

Combinatorial characterisation: multi-scale structure

A word w is a coding of a curve γ if, and only if, \tilde{w} is a coding of $\tilde{\gamma} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \circ \gamma$ (resp. $\begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \circ \gamma$ if 0 is isolated).

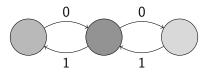
Hence, a word w is tangent if, and only if, \tilde{w} is tangent.

Since \tilde{w} is shorter than w, we can repeat the process until we are stuck: we get a word d(w).

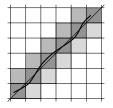
- d(w) is empty if, and only if, w is a coding of a digital straight segment.
- Otherwise, d(w) contains 00 and 11: we have to characterize tangent words whose slope is 1.

Combinatorial characterisation: slope 1

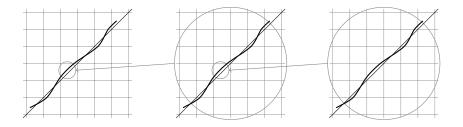
A word w is tangent if, and only if, d(w) is recognised by the following automaton with three states, which are all considered as initial and accepting:



For example, the word 0110100110 (which is not balanced) is diagonal:



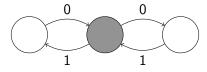
Slope 1: how to produce such oscillations ?

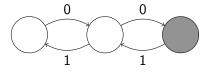


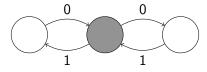
1001000100100100100100100100 = w

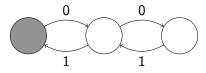
$\begin{array}{l} 1001000100100100100100100100 = w \\ 1001000100100100100010001000100 \end{array}$

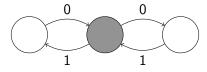
$\begin{array}{l} 1001000100100100100100100100 = w \\ 100100010010010010001001000100 \\ 110111101101 \end{array}$

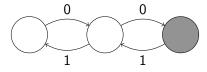






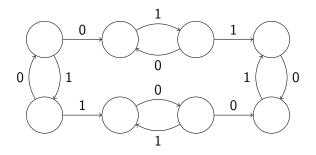






No bad vibration: analytic curves

A word w is a tangent word of an analytic curve if, and only if, d(w) is recognised by the following automaton with eight states, which are all considered as initial and accepting:



The tangent analytic curves also correspond to the tangent words of the smooth curves with nowhere zero curvature, For example, 001100 is tangent but not tangent analytic.

Balance and complexity

Each class of words is strictly included in the next one:

- 1-balanced words (digital straight segments)
- tangent analytic words
- tangent (smooth) words
- 2-balanced words

For the first two classes, the complexity is cubical whereas for the last two classes, the complexity is exponential.

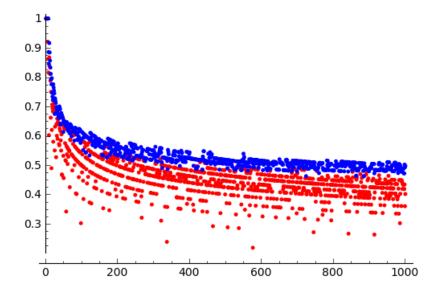
Recall:

- ▶ a word is k-balanced if $\forall u, v \in Fact(w)$ $|u| = |v| \Rightarrow ||u|_1 |v|_1| \le k$
- the complexity of a set of words maps each integer n to the number of words of length n.

The length of the smallest word appearing in the decomposition of a smooth curve into maximal digital straight segments does not necessarilly goes to infinity when the mesh of the grid goes to zero (it is the case for strictly convex curves [ref]).

However it becomes the case if we replace digital straight segments by tangent words.

Using tangent words for curve segmentation



A lot of open questions around the notion of tangent words are still open.

There is a grant for a PhD in Montpellier about this topic for the period 2011–2014. Please contact us if some good student could be interested.

http://www.lirmm.fr/~monteil/proposition-de-these/