A Unified Topological Framework for Digital Imaging

L. Mazo ${ }^{1} \quad$ N. Passat ${ }^{1} \quad$ M. Couprie ${ }^{2} \quad$ C. Ronse ${ }^{1}$

${ }^{1}$ LSIIT
University of Strasbourg

${ }^{2}$ LIGM, ESIEE
University of Paris-Est

DGCI'2011 Nancy, 6-8 april 2011

ESIEE
PARIS

Presentation outline

1 Introduction

2 Regular images

3 Algebraic properties

4 Topological properties

5 Conclusion

1 Introduction

2 Regular images

3 Algebraic properties

4 Topological properties

5 Conclusion

Embedding

$\bigcirc 0 \bullet 00$

$$
\mathbb{Z}^{2}
$$

\mathbb{F}^{2}

Embedding

\mathbb{F}^{n} a discrete topological space

k-face: set of 2^{k} points of \mathbb{Z}^{n} forming a unit cube.

\mathbb{F}^{n} a discrete topological space

k-face: set of 2^{k} points of \mathbb{Z}^{n} forming a unit cube.

■ $\left(\mathbb{F}^{n}, \subseteq\right)$ is a POSET
$=\Rightarrow \mathbb{F}^{n}$ has a natural topology where a subspace $\{f, g\}$ is connected iff f and g are comparable.

\mathbb{F}^{n} a discrete topological space

k-face: set of 2^{k} points of \mathbb{Z}^{n} forming a unit cube.

- $\left(\mathbb{F}^{n}, \subseteq\right)$ is a POSET
$■ \Rightarrow \mathbb{F}^{n}$ has a natural topology where a subspace $\{f, g\}$ is connected iff f and g are comparable.

1 Introduction

2 Regular images

3 Algebraic properties

4 Topological properties

5 Conclusion

Opposite faces, connectivity function

■ Let f be a k-face. Two $(k+1)$-faces a, b are opposite w.r.t. f if $a \cap b=f$ and there is no face in \mathbb{F}^{n} including $a \cup b$.

We set $\operatorname{opp}(f)=\{\{a, b\} \mid a$ is opposite to b w.r.t. $f\}$

Opposite faces, connectivity function

■ Let f be a k-face. Two $(k+1)$-faces a, b are opposite w.r.t. f if $a \cap b=f$ and there is no face in \mathbb{F}^{n} including $a \cup b$.

We set $\operatorname{opp}(f)=\{\{a, b\} \mid a$ is opposite to b w.r.t. $f\}$

Regular images

■ Let $\varepsilon:[1, n] \rightarrow\{-1,1\}$ be a function called connectivity function. A function $\mu: \mathbb{F}^{n} \rightarrow\{0,1\}$ is an ε-regular image if for all m-face $f \in \mathbb{F}^{n}, m \in[1, n-1]$, we have, recursively,

$$
\mu(f)= \begin{cases}V_{\{a, b\} \in \operatorname{opp}(f)} \mu(a) \wedge \mu(b) & \text { if } \varepsilon(m+1)=+1 \\ \wedge\{a, b\} \in \operatorname{opp}(f) \mu(a) \vee \mu(b) & \text { if } \varepsilon(m+1)=-1\end{cases}
$$

Regular images

■ Let $\varepsilon:[1, n] \rightarrow\{-1,1\}$ be a function called connectivity function. A function $\mu: \mathbb{F}^{n} \rightarrow\{0,1\}$ is an ε-regular image if for all m-face $f \in \mathbb{F}^{n}, m \in[1, n-1]$, we have, recursively,

$$
\mu(f)= \begin{cases}\bigvee_{\{a, b\} \in \operatorname{opp}(f)} \mu(a) \wedge \mu(b) & \text { if } \varepsilon(m+1)=+1 \\ \bigwedge_{\{a, b\} \in \operatorname{opp}(f)} \mu(a) \vee \mu(b) & \text { if } \varepsilon(m+1)=-1\end{cases}
$$

Examples - 1

Examples - 1

Examples - 1

Examples - 1

Examples - 1

Examples - 1

Examples - 1

Examples - 1

Examples - 1

Examples - 1

Examples - 1

Examples - 1

Examples - 1

Examples - 1

Examples - 1

Examples - 2

Examples - 2

$$
\begin{gathered}
\\
\\
\\
\\
\\
\varepsilon(3)=1, \\
\varepsilon(1)=1,
\end{gathered}
$$

Examples - 2

$$
\begin{array}{ll}
\substack{9} \\
& \varepsilon(3)=-1, \\
& \varepsilon(2)=1, \\
& \varepsilon(1)= \pm 1
\end{array}
$$

Examples - 2

$$
\begin{aligned}
& \because \square \\
& \varepsilon(3)=-1 \text {, } \\
& \varepsilon(2)=-1 \text {, } \\
& \varepsilon(1)= \pm 1
\end{aligned}
$$

Examples - 3

Examples - 3

$$
\varepsilon(3)=\varepsilon(2)=\varepsilon(1)=-1
$$

Examples - 3

1 Introduction

2 Regular images

3 Algebraic properties

4 Topological properties

5 Conclusion

Computing k-faces from facets (1): ε constant

Adjacencies in \mathbb{Z}^{n}	Connectivity function	\#facets
$\left(2 n, 3^{n}-1\right)$	-1	$2^{n-k}(\mathrm{all})$
$\left(3^{n}-1,2 n\right)$	+1	1

Black faces : minimal number of black facets in the neighborhood.

Computing k-faces from facets (2): $n=3$

\#facets
Adjacencies in $\mathbb{Z}^{3} \quad \varepsilon \quad \begin{array}{llll}=0 & k=1 & k=2\end{array}$
$\left.\begin{array}{lllll}\hline & 1 & \rightarrow-1 & & \\ (6,18) & & \rightarrow+1 & 6 & 3\end{array}\right) 2$

Black faces : minimal number of black facets in the neighborhood.

Duality

$$
\begin{aligned}
& \bigcirc \bullet \bullet \\
& \bullet \\
& \bigcirc \quad \bullet \\
& \downarrow \in:\left\{\begin{array}{l}
1 \rightarrow-1 \\
2 \rightarrow+1
\end{array}\right.
\end{aligned}
$$

Duality

$$
\begin{aligned}
& \bigcirc \bullet \bullet \\
& \bullet \bigcirc \quad \bullet \\
& \downarrow \varepsilon:\left\{\begin{array}{l}
1 \rightarrow-1 \\
2 \rightarrow+1
\end{array}\right. \\
& \square \square \square \square \square \\
& \square \square \square: \square
\end{aligned}
$$

Duality

$$
\begin{aligned}
& \bigcirc \bullet \\
& \bullet \bigcirc \\
& \downarrow \varepsilon:\left\{\begin{array}{l}
1 \rightarrow-1 \\
2 \rightarrow+1
\end{array}\right. \\
& \square \square \square \square \square \\
& \square \square \square \square \square
\end{aligned}
$$

Duality

$$
\begin{aligned}
& \bigcirc \bullet \bullet \\
& \bullet \\
& \bigcirc \quad \bullet \\
& \downarrow \in:\left\{\begin{array}{l}
1 \rightarrow-1 \\
2 \rightarrow+1
\end{array}\right.
\end{aligned}
$$

Duality

$$
\begin{aligned}
& \bigcirc \bullet \bullet \\
& \text { - } 0 \\
& \text { O } \\
& \downarrow \varepsilon:\left\{\begin{array}{l}
1 \rightarrow-1 \\
2 \rightarrow+1
\end{array}\right. \\
& \circ \text { - } \\
& \downarrow(-\varepsilon): \begin{cases}1 & \rightarrow-1 \\
2 & \rightarrow+1\end{cases}
\end{aligned}
$$

Duality

$$
\begin{aligned}
& \bigcirc \bullet \bullet \\
& 7 \\
& \text { - } \bigcirc \bigcirc \\
& \rightarrow \\
& \downarrow \varepsilon:\left\{\begin{array}{l}
1 \rightarrow-1 \\
2 \rightarrow+1
\end{array}\right. \\
& \downarrow(-\varepsilon):\left\{\begin{array}{l}
1 \rightarrow-1 \\
2 \rightarrow+1
\end{array}\right.
\end{aligned}
$$

Duality

$$
\begin{array}{lll}
\bigcirc & \bullet & \bullet \\
\bullet & \bigcirc & \bullet
\end{array} \quad \rightarrow
$$

Topological regularity

No artifact:

Let ε be a connectivity function.
Let $\mu: \mathbb{F}^{n} \rightarrow\{0,1\}$ be an ε-regular image. Let $x \in\{0,1\}$.
The interior of $\mu^{-1}(\{x\})$ is a regular open set. The closure of $\mu^{-1}(\{x\})$ is a regular closed set.

1 Introduction

2 Regular images

3 Algebraic properties

4 Topological properties

5 Conclusion

Paths: $\mathbb{Z}^{n} \rightarrow \mathbb{F}^{n}$

Path in \mathbb{Z}^{n} : sequence of α-adjacent points.

Paths: $\mathbb{Z}^{n} \rightarrow \mathbb{F}^{n}$

Path in \mathbb{Z}^{n} : sequence of α-adjacent points.

Path in \mathbb{F}^{n} : sequence of comparable faces.

Paths: $\mathbb{Z}^{n} \rightarrow \mathbb{F}^{n}$

Path in \mathbb{Z}^{n} : sequence of α-adjacent points.

Path in \mathbb{F}^{n} : sequence of comparable faces.

Paths: $\mathbb{Z}^{n} \rightarrow \mathbb{F}^{n}$

Path in \mathbb{Z}^{n} : sequence of α-adjacent points.

Path in \mathbb{F}^{n} : sequence of comparable faces.

$$
\alpha=4
$$

$$
\alpha=8
$$

Connected in $\mathbb{Z}^{n} \Rightarrow$ Connected in \mathbb{F}^{n}

Paths: $\mathbb{F}^{n} \rightarrow \mathbb{Z}^{n}$

\Rightarrow One-to-one correspondence between the connected
components (object and background)

Paths: $\mathbb{F}^{n} \rightarrow \mathbb{Z}^{n}$

Connected?

\Rightarrow One-to-one correspondence between the connected components (object and background)

Paths: $\mathbb{F}^{n} \rightarrow \mathbb{Z}^{n}$

$$
\alpha=26
$$

\Rightarrow One-to-one correspondence between the connected components (object and background)

Paths: $\mathbb{F}^{n} \rightarrow \mathbb{Z}^{n}$

$$
\alpha=18
$$

\Rightarrow One-to-one correspondence between the connected components (object and background)

Paths: $\mathbb{F}^{n} \rightarrow \mathbb{Z}^{n}$

$$
\alpha=18
$$

\Rightarrow One-to-one correspondence between the connected components (object and background)

Paths: $\mathbb{F}^{n} \rightarrow \mathbb{Z}^{n}$

$$
\alpha=18
$$

\Rightarrow One-to-one correspondence between the connected components (object and background)

Paths: $\mathbb{F}^{n} \rightarrow \mathbb{Z}^{n}$

$$
\alpha=6
$$

\Rightarrow One-to-one correspondence between the connected components (object and background)

Paths: $\mathbb{F}^{n} \rightarrow \mathbb{Z}^{n}$

$$
\alpha=6
$$

\Rightarrow One-to-one correspondence between the connected components (object and background)

Paths: $\mathbb{F}^{n} \rightarrow \mathbb{Z}^{n}$

$$
\alpha=6
$$

\Rightarrow One-to-one correspondence between the connected components (object and background)

Paths: $\mathbb{F}^{n} \rightarrow \mathbb{Z}^{n}$

$$
\alpha=6
$$

\Rightarrow One-to-one correspondence between the connected components (object and background)

Fundamental Group

Digital fundamental group
\rightleftarrows
isomorphism
\mathbb{F}^{n} path fundamental group

Fundamental Group

Digital fundamental group
\rightleftarrows
isomorphism
\mathbb{F}^{n} path fundamental group
\mathbb{F}^{n} continuous path fundamental group

1 Introduction

2 Regular images

3 Algebraic properties

4 Topological properties

5 Conclusion

Salient outcomes

- connected components are in one-to-one correspondence
- groups of "loops", up to deformations, are isomorphic
- easy to compute
- easily extensible to other codomains than $\{0,1\}$

Salient outcomes

■ connected components are in one-to-one correspondence

- groups of "loops", up to deformations, are isomorphic
- easy to compute
- easily extensible to other codomains than $\{0,1\}$

Salient outcomes

■ connected components are in one-to-one correspondence
■ groups of "loops", up to deformations, are isomorphic

- easy to compute
- easily extensible to other codomains than $\{0,1\}$

Salient outcomes

■ connected components are in one-to-one correspondence
■ groups of "loops", up to deformations, are isomorphic
■ easy to compute

- easily extensible to other codomains than $\{0,1\}$

Salient outcomes

■ connected components are in one-to-one correspondence
■ groups of "loops", up to deformations, are isomorphic

- easy to compute

■ easily extensible to other codomains than $\{0,1\}$

Thank you

