A Unified Topological Framework for Digital Imaging

L. $Mazo^1$ N. $Passat^1$ M. $Couprie^2$ C. $Ronse^1$

¹LSIIT University of Strasbourg

²LIGM, ESIEE University of Paris-Est

DGCI'2011 Nancy, 6-8 april 2011

1 Introduction

- 2 Regular images
- 3 Algebraic properties
- 4 Topological properties
- 5 Conclusion

- 2 Regular images
- 3 Algebraic properties
- 4 Topological properties
- 5 Conclusion

Embedding

 \mathbb{Z}^2

 \mathbb{F}^2

-∢ ≣ ▶

< 47 > <

4 / 23

Embedding

 \mathbb{Z}^2

 \mathbb{F}^2

프 에 제 프 에

< 47 > <

4 / 23

\mathbb{F}^n a discrete topological space

k-face: set of 2^k points of \mathbb{Z}^n forming a unit cube.

• $(\mathbb{F}^n, \subseteq)$ is a POSET

■ ⇒ Fⁿ has a natural topology where a subspace {f,g} is connected iff f and g are comparable.

\mathbb{F}^n a discrete topological space

k-face: set of 2^k points of \mathbb{Z}^n forming a unit cube.

• $(\mathbb{F}^n, \subseteq)$ is a POSET

■ ⇒ \mathbb{F}^n has a natural topology where a subspace $\{f, g\}$ is connected iff f and g are comparable.

5 / 23

\mathbb{F}^n a discrete topological space

k-face: set of 2^k points of \mathbb{Z}^n forming a unit cube.

- $(\mathbb{F}^n, \subseteq)$ is a POSET
- ⇒ \mathbb{F}^n has a natural topology where a subspace $\{f, g\}$ is connected iff f and g are comparable.

2 Regular images

- 3 Algebraic properties
- 4 Topological properties
- 5 Conclusion

Let f be a k-face. Two (k + 1)-faces a, b are opposite w.r.t. f if $a \cap b = f$ and there is no face in \mathbb{F}^n including $a \cup b$.

We set $opp(f) = \{\{a, b\} \mid a \text{ is opposite to } b \text{ w.r.t. } f\}$

(日)・4間 (4) ほう・4 語 (4) ほう めんの

• Let f be a k-face. Two (k + 1)-faces a, b are opposite w.r.t. f if $a \cap b = f$ and there is no face in \mathbb{F}^n including $a \cup b$.

We set $opp(f) = \{\{a, b\} \mid a \text{ is opposite to } b \text{ w.r.t. } f\}$

7 / 23

• Let $\varepsilon : [1, n] \to \{-1, 1\}$ be a function called connectivity function. A function $\mu : \mathbb{F}^n \to \{0, 1\}$ is an ε -regular image if for all *m*-face $f \in \mathbb{F}^n$, $m \in [1, n-1]$, we have, recursively,

$$\mu(f) = \begin{cases} \bigvee_{\{a,b\} \in \operatorname{opp}(f)} \mu(a) \land \mu(b) & \text{if } \varepsilon(m+1) = +1 \\ \wedge_{\{a,b\} \in \operatorname{opp}(f)} \mu(a) \lor \mu(b) & \text{if } \varepsilon(m+1) = -1 \end{cases}$$

• Let $\varepsilon : [1, n] \to \{-1, 1\}$ be a function called connectivity function. A function $\mu : \mathbb{F}^n \to \{0, 1\}$ is an ε -regular image if for all *m*-face $f \in \mathbb{F}^n$, $m \in [1, n-1]$, we have, recursively,

$$\mu(f) = \begin{cases} \bigvee_{\{a,b\} \in \operatorname{opp}(f)} \mu(a) \land \mu(b) & \text{if } \varepsilon(m+1) = +1 \\ \bigwedge_{\{a,b\} \in \operatorname{opp}(f)} \mu(a) \lor \mu(b) & \text{if } \varepsilon(m+1) = -1 \end{cases}$$

크

《曰》 《聞》 《臣》 《臣》

イロト イポト イヨト イヨト

イロト イポト イヨト イヨト

イロト イポト イヨト イヨト

- ∢ ∃ ⊳

- ∢ ∃ ⊳

イロト イヨト イヨト

- ∢ ∃ ⊳

10 / 23

æ

æ

æ

Examples - 3

Examples - 3

$\varepsilon(3) = \varepsilon(2) = \varepsilon(1) = -1$

11 / 23

Examples - 3

- 2 Regular images
- 3 Algebraic properties
- 4 Topological properties
- 5 Conclusion

(ロト 《聞 と 《臣 と 《臣 と 《句 くの

Adjacencies in \mathbb{Z}^n	Connectivity function	#facets
$(2n, 3^n - 1)$	-1	2^{n-k} (all)
$(3^n - 1, 2n)$	+1	1

Black faces : minimal number of black facets in the neighborhood.

Computing k-faces from facets (2): n = 3

		#facets		
Adjacencies in \mathbb{Z}^3	ε	<i>k</i> = 0	k = 1	<i>k</i> = 2
(6,18)	$egin{array}{ccc} 1 ightarrow -1 \ 2 ightarrow +1 \ 3 ightarrow -1 \end{array}$	6	3	2
(18,6)	$egin{array}{c} 1 ightarrow +1 \ 2 ightarrow -1 \ 3 ightarrow +1 \end{array}$	3	2	1

Black faces : minimal number of black facets in the neighborhood.

・ 戸 ト ・ ヨ ト ・ ヨ ト

《曰》 《聞》 《臣》 《臣》 三臣

《曰》 《聞》 《臣》 《臣》 三臣

 $\bigcirc \bullet \bullet & \neg & \bullet & \bigcirc & \bigcirc \\ \bullet & \bigcirc \bullet & & \rightarrow & & \bigcirc & \bigcirc & \bigcirc \\ \downarrow & \varepsilon : \left\{ \begin{array}{c} 1 \to -1 \\ 2 \to +1 & & & \downarrow \\ \end{array} \right\} (-\varepsilon) : \left\{ \begin{array}{c} 1 \to -1 \\ 2 \to +1 & & \downarrow \\ \end{array} \right\}$

《曰》 《聞》 《臣》 《臣》 三臣

No artifact:

Let ε be a connectivity function. Let $\mu : \mathbb{F}^n \to \{0, 1\}$ be an ε -regular image. Let $x \in \{0, 1\}$. The interior of $\mu^{-1}(\{x\})$ is a regular open set. The closure of $\mu^{-1}(\{x\})$ is a regular closed set.

1 Introduction

- 2 Regular images
- 3 Algebraic properties
- 4 Topological properties
- 5 Conclusion

(日) 《聞》 《国》 《国》 《日)

faces.

faces.

faces.

Connected in $\mathbb{Z}^n \Rightarrow$ Connected in \mathbb{F}^n

Connected ?

⇒ One-to-one correspondence between the connected components (object and background)

 $\alpha = 26$

 $\alpha = 18$

 $\alpha = 18$

 $\alpha = 18$

 $\alpha = \mathbf{6}$

⇒ One-to-one correspondence between the connected components (object and background)

 $\alpha = 6$

⇒ One-to-one correspondence between the connected components (object and background)

 $\alpha = \mathbf{6}$

⇒ One-to-one correspondence between the connected components (object and background)

 $\alpha = \mathbf{6}$

⇒ One-to-one correspondence between the connected components (object and background)

Digital fundamental $\xrightarrow{}$ \mathbb{F}^n path fundamental group group

 \mathbb{F}^n continuous path fundamental group

지금지 지금지 같이 가지다

Digital fundamental $\overrightarrow{\qquad}$ \mathbb{F}^n path fundamental group group \downarrow \downarrow isomorphism \mathbb{F}^n continuous path fundamental group

1 Introduction

- 2 Regular images
- 3 Algebraic properties
- 4 Topological properties
- 5 Conclusion

- connected components are in one-to-one correspondence
- groups of "loops", up to deformations, are isomorphic
- easy to compute
- easily extensible to other codomains than $\{0,1\}$

connected components are in one-to-one correspondence

- groups of "loops", up to deformations, are isomorphic
- easy to compute
- easily extensible to other codomains than {0,1}

connected components are in one-to-one correspondence
 groups of "loops", up to deformations, are isomorphic

easy to compute

easily extensible to other codomains than {0,1}

- connected components are in one-to-one correspondencegroups of "loops", up to deformations, are isomorphic
- groups of loops, up to deformations, are is
- easy to compute
- easily extensible to other codomains than {0,1}

- connected components are in one-to-one correspondence
- groups of "loops", up to deformations, are isomorphic
- easy to compute
- easily extensible to other codomains than $\{0, 1\}$

Thank you