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F
n a discrete topological space
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k-face: set of 2k points of Zn forming a unit cube.

(Fn,⊆) is a POSET

⇒ F
n has a natural topology where a subspace {f , g} is connected iff

f and g are comparable.
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Opposite faces, connectivity function

Let f be a k-face. Two (k + 1)-faces a, b are opposite w.r.t. f if
a ∩ b = f and there is no face in F

n including a ∪ b.

We set opp(f ) = {{a, b} | a is opposite to b w.r.t. f }
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Regular images

Let ε : [1, n] → {−1, 1} be a function called connectivity function.
A function µ : Fn → {0, 1} is an ε-regular image if for all m-face
f ∈ F

n, m ∈ [1, n − 1], we have, recursively,

µ(f ) =

{ ∨

{a,b}∈opp(f )µ(a) ∧ µ(b) if ε(m + 1) = +1
∧

{a,b}∈opp(f )µ(a) ∨ µ(b) if ε(m + 1) = −1
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Examples - 1

ε(2) = −1
ε(1) = +1
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Examples - 2

ε = . . .
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Examples - 2

ε(3) = 1,
ε(2) = 1,
ε(1) = 1

10 / 23



Examples - 2

ε(3) = −1,
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Examples - 3
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Examples - 3

ε(3) = ε(2) = ε(1) = −1

11 / 23



Examples - 3

ε(3) = ε(2) = ε(1) = −1 ε(3) = ε(1) = −1, ε(2) = 1
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Computing k-faces from facets (1): ε constant

Adjacencies in Z
n Connectivity function #facets

(2n, 3n − 1) −1 2n−k (all)
(3n − 1, 2n) +1 1

Black faces : minimal number of black facets in the neighborhood.
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Computing k-faces from facets (2): n = 3

#facets

Adjacencies in Z
3 ε k = 0 k = 1 k = 2

1 → −1
(6, 18) 2 → +1 6 3 2

3 → −1

1 → +1
(18, 6) 2 → −1 3 2 1

3 → +1

Black faces : minimal number of black facets in the neighborhood.
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Topological regularity

No artifact:

Let ε be a connectivity function.
Let µ : Fn → {0, 1} be an ε-regular image. Let x ∈ {0, 1}.
The interior of µ−1({x}) is a regular open set.
The closure of µ−1({x}) is a regular closed set.
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Paths: Zn → F
n

Path in Z
n: sequence of α-adjacent

points.

α = 4

α = 8

Path in F
n: sequence of comparable

faces.
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Paths: Fn → Z
n

⇒ One-to-one correspondence between the connected
components (object and background)
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Fundamental Group

Digital fundamental
group

isomorphism

F
n path fundamental

group

F
n continuous path

fundamental group
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Salient outcomes

(Zn, α, β) ε = f (α, β) F
n

connected components are in one-to-one correspondence

groups of “loops”, up to deformations, are isomorphic

easy to compute

easily extensible to other codomains than {0, 1}
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Thank you
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