Well-composed cell complexes

Rocio Gonzalez-Diaz
Maria-Jose Jimenez Belen Medrano

Motivation

\square Our ultimate purpose:
To extract (co)homological information of a 3D model.

Motivation

For this aim, first we need to compute representative (co)cycles of (co)homology generators of dimension 1 in the model.

Extracted from Dey et al., Computing Geometry-aware Handle and Tunnel Loops in 3D Models. ACM Transactions on Graphics, Vol. 27, No. 3, Article 45, (2008).

Introduction

ㅁ T. Dey et al:
Computing loops on the surface that wraps around their 'handles' and 'tunnels'.

Applications:

- Feature detection
- Topological simplification
-...

Dey T. K., Li K., Sun J.: On computing handle and tunnel loops. IEEE Proceedings of the international conference on cyberworlds; 2007.p.357-66.

Introduction

\square All the computations are carried out over a connected closed surface in R^{3}.

Can we start from a similar scenario if we consider the cubical complex associated to a 3D digital picture?

Our answer: Well-composed cell complexes

Introduction

\square Well-composed images enjoy important topological and geometric properties:

1. There is only one type of connected component.
2. Some algorithms used in computer vision, computer graphics and image processing are simpler.

Introduction

\square Well-composed images enjoy important topological and geometric properties:
3. Thinning algorithms can be simplified and naturally made parallel if the input image is well-composed.
4. Some algorithms for computing surface curvature or extracting adaptive triangulated surfaces assume that the input image is well-composed.

Introduction

\square There are several methods for turning binary digital images that are not well-composed into well-composed ones:

...but these methods "destroy the topology".

Introduction

\square Our goal in this paper:

To "transform" the cubical complex induced by a 3D binary digital picture into a homotopy equivalent cell complex, whose boundary is made up by 2-manifolds:

WELL -COMPOSED CELL COMPLEX.

3D digital images:

$\square I=\left(Z^{3}, B\right)$: set of unit cubes (voxels) centered at the points of B together with all the faces.
\square Example: $\mathrm{I}=\left(\mathrm{Z}^{3}, \mathrm{~B}\right), \mathrm{B}=\{(0,0,0),(0,1,0),(0,0,1),(1,0,1)\}$

$B=$ foreground $\mathrm{B}^{\mathrm{c}}=\mathrm{Z}^{3} \backslash \mathrm{~B}=$ background

Cubical complex:

$\{$ Voxels $\} \longleftrightarrow\left\{3\right.$ D cubes in $\left.R^{3}\right\}$
 1

Combinatorial struture: CUBICAL COMPLEX

- 0-cells = vertices
- 1-cells = edges
- 2-cells = squared faces
- 3-cells = cubes

Voxel

Cubical complex:

\{ Voxels \}

I

Combinatorial struture: CUBICAL COMPLEX

0-cells notation:

$$
p_{l}=\left(i \pm \frac{1}{2}, j \pm \frac{1}{2}, k \pm \frac{1}{2}\right)
$$

Cubical complex:

$\{$ Voxels $\} \longleftrightarrow\left\{3\right.$ D cubes in $\left.R^{3}\right\}$
 I

Combinatorial struture: CUBICAL COMPLEX

1-cells notation:

$$
\begin{aligned}
& a_{l}=\left(i, j \pm \frac{1}{2}, k \pm \frac{1}{2}\right) \\
& a_{l}=\left(i \pm \frac{1}{2}, j, k \pm \frac{1}{2}\right) \\
& a_{l}=\left(i \pm \frac{1}{2}, j \pm \frac{1}{2}, k\right)
\end{aligned}
$$

Cubical complex:

$\{$ Voxels $\} \longleftrightarrow\left\{3\right.$ D cubes in $\left.R^{3}\right\}$
 I

Combinatorial struture: CUBICAL COMPLEX

2-cells notation:

$$
\begin{aligned}
& c_{l}=\left(i \pm \frac{1}{2}, j, k\right) \\
& c_{l}=\left(i, j \pm \frac{1}{2}, k\right) \\
& c_{l}=\left(i, j, k \pm \frac{1}{2}\right)
\end{aligned}
$$

Cubical complex:

$\{$ Voxels $\} \longleftrightarrow\left\{3\right.$ D cubes in $\left.R^{3}\right\}$
I
Combinatorial struture: CUBICAL COMPLEX

Well-composed images:

$\square I=\left(Z^{3}, B\right)$ is a well-composed image if the boundary of the cubical complex associated, $\partial \mathrm{Q}(\mathrm{I})$, is a 2D-manifold.
\square [Latecki97] A 3D binary digital image is well-composed iff the configuractions $\mathrm{C}_{1}, \mathrm{C}_{2}$ and C_{3} do not occur in $\mathrm{Q}(\mathrm{I})$.

Well-composed images:

This point has not a neighborhood homeomorphic to R^{2}.

Well-composed images:

Critical configurations
within a block of eight cubes

From a cubical complex to a well-composed cell complex:

A 3D digital image is not generally a well-composed image

Cubical complex Q(I)

Homotopy equivalent

Cell complex $\mathrm{K}(\mathrm{I})$ such that $\partial \mathrm{K}(\mathrm{I})$ is composed by 2D-manifolds: a well-composed cell complex.

From a cubical complex to a well-composed cell complex:

Key idea: to create a true face adyacency to avoid the critical configurations

Cubical complex Q(I)

Homotopy equivalent

Cell complex $\mathrm{K}(\mathrm{I})$ such that $\partial \mathrm{K}(\mathrm{I})$ is composed by 2D-manifolds: a well-composed cell complex.

From a cubical complex to a well-composed cell complex:

INPUT
Cubical complex Q(I)

OUTPUT
Well-composed cell complex K(I)

From a cubical complex to a well-composed cell complex:

So, we need "more space" to add new cells:

Adjacency = face relation between cells.

From a cubical complex to a well-composed cell complex:

Step 1: Label critical edges and critical vertices of $\mathrm{Q}(\mathrm{I})$.

Step 2: Repair critical edges of Q(I).

Step 3: Repair critical vertices of $\mathrm{Q}(\mathrm{I})$.

Cubical complex Q(I)

Homotopy equivalent

Cell complex $\mathrm{K}(\mathrm{I})$ such that $\partial \mathrm{K}(\mathrm{I})$ is composed by 2D-manifolds: a well-composed cell complex.

From a cubical complex to a well-composed cell complex:

Step 1: Label critical edges and critical vertices of $\mathrm{Q}(\mathrm{I})$.

A := set of critical edges of $\mathrm{Q}(\mathrm{I})$ $\mathrm{Vi}:=$ set of critical vertices of $\mathrm{Q}(\mathrm{I})$

From a cubical complex to a well-composed cell complex:

Step 1: Label critical edges and critical vertices of $\mathrm{Q}(\mathrm{I})$.

Step 2: Repair critical edges of Q(I).

Computing well-composed cell complexes

Step 1: Label critical edges and vertices.

Step 2: Repair critical edges of $\mathrm{Q}(\mathrm{I})$.

Computing well-composed cell complexes efficiently

Step 1: Label critical edges and vertices.

Step 2: Repair critical edges of $\mathrm{Q}(\mathrm{I})$.

Adjacency = face relation between cells.

From a cubical complex to a well-composed cell complex:

Step 1: Label critical edges and critical vertices of $\mathrm{Q}(\mathrm{I})$.

Step 2: Repair critical edges of Q(I).

Step 3: Repair critical vertices of Q(I).

Computing well-composed cell complexes

Step 1: Label critical Step 2: Repair edges and critical critical edges of vertices of $\mathrm{Q}(\mathrm{I})$.

Step 3: Repair critical vertices of $\mathrm{Q}(\mathrm{I})$.

Example 1

From a cu.bical complex to a well-composed cell complex:

Step 1: Label critical edges and critical vertices of $\mathrm{Q}(\mathrm{I})$.

Step 2: Repair critical edges of Q(I).

Step 3: Repair critical vertices of Q(I).

Example 2

Computing well-composed cell complexes

Step 1: Label critical Step 2: Repair edges and critical critical edges of vertices of $\mathrm{Q}(\mathrm{I})$.

Step 3: Repair critical vertices of Q(I).

From a cubical complex to a well-composed cell complex:

Step 1: Label critical edges and critical vertices of $\mathrm{Q}(\mathrm{I})$.

Step 2: Repair critical edges of Q(I).

Step 3: Repair critical vertices of Q(I).

From a cubical complex to a well-composed cell complex:

Step 1: Label critical Step 2: Repair edges and critical critical edges of vertices of $\mathrm{Q}(\mathrm{I})$.

Step 3: Repair critical vertices of Q(I).

Future work:

Aims:
\square To compute the homology of the foreground image as well as the background by computing the homology of the boundary surface;
\square Geometrically control the representative (co)-cycles of homology generators;
\square Deal with other 3D digital images: $(6,26),(18,6)$ or $(6,18)$ 3D images.

Thanks for your attention!

Questions

