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Graph Cut Based Image Segmentation

Reference
Y. Boykov and G. Funka-Lea. Graph cuts and effcient n-d image
segmentation. International Journal of Compututer Vision,
70(2):109-131, 2006.

Image segmentation
formulated as an discrete
energy optimization problem
Energy function is embedded
in a specially designed graph
Optimal solution obtained by
finding a minimum cut
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Properties and Challenges

Advantages:
Global optima
Polynomial time algorithms
Straightforward integration of hard constraints
Applicable in N-D space

Challenges:
Optimization of “length” dependent energy terms
Popular segmentation models:

Chan-Vese model - minimizes the intra-region intensity variance
and the Euclidean length of the segmentation boundary
Geodesic active contours - segmentation boundary defined as a
geodesic in an image-based N-D Riemannian space
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Cut Metrics

Reference
Y. Boykov and V. Kolmogorov. Computing geodesics and minimal
surfaces via graph cuts. Proceedings of the Ninth IEEE International
Conference on Computer Vision, pp. 26-33, vol. 1, 2003.

Correspondence of cuts and
contours in grid graphs
Cut cost approximates
Euclidean/Riemannian length of a
corresponding contour
Find geodesics and minimal
surfaces (satisfying constraints) by
finding minimum cuts
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Edge Weights and the Cauchy-Crofton Formula (2D)
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Riemannian Metrics and Method Issues

Riemannian metrics:
A smoothly varying metric tensor M defined at each node
Approximating edge weights (2D):

wRk = wEk ·
det M

(uT
k ·M · uk )3/2

Issues:
Computation of ∆φk

Not invariant to horizontal and vertical mirroring
Extension to 3D unclear, no explicit method

Large error in case of Riemannian metrics for common
neighbourhoods
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Voronoi Based ∆φk Partitioning

Reference
O. Daněk and P. Matula. Graph cuts and approximation of the
euclidean metric on anisotropic grids. VISAPP ’10: International
Conference on Computer Vision Theory and Applications. vol. 2, pp.
68-73 (2010)
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in terms of their angular orientation
Computed via Voronoi diagram on a
unit hypersphere
Invariant to mirroring, generalizes to
3D
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Decomposition of Constant Metrics

Constant Riemannian metric:
Non-zero positive definite symmetric matrix M
||u||R =

√
uT ·M · u

Two real-valued eigenvalues λ1 and λ2, corresponding to
eigenvectors u1 and u2

Represents a space dilation by
√
λ1 and

√
λ2 in the direction of u1

and u2, respectively

Transformation matrix T
Same eigenvectors as M, but eigenvalues

√
λ1 and

√
λ2

M = T T · T
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Space Projection Trick
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Key Observation

Projected space is Euclidean
Transformation is linear⇒ number of intersections with each
family of lines is preserved
Corollary:

Cauchy-Crofton formula for Euclidean spaces applies
Edge weight formula for Euclidean spaces can be used considering
the transformed set of lines
Imprecise Riemannian edge weight formula is bypassed
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Edge Weights Computation
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Non-constant Metrics and Extension to 3D

Non-constant metrics:
Different matrix M is considered in each node to compute the
edge weights

Extension to 3D:
Derived the same way from Cauchy-Crofton formula for surface
area
wRk =

∆ρk ∆φv
k

π

φv
k is the Voronoi partitioning of a unit sphere surface among the

points T ·ek
||T ·ek ||

∆ρk is the line density, the same formula as in 2D applies
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Metrication Error for Straight Lines in 2D



Distance Maps
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(a) N8 (b) N16 (c) N32
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Catenoid Reconstruction

(a) N26 (b) N98 (c) Continuous



Image Segmentation - Cell Nuclei

Image derived anisotropic metric tensor constructed in each point.
Minimal separating geodesic is found.

(a) (b) (c) (d)

Figure: (a) Image data and foreground seeds. (b) Continuous maximum flow.
(c) Combinatorial graph cuts, BK method, N16. (d) Combinatorial graph cuts,
proposed method, N16.
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Image Segmentation - Knee MRI

Image derived anisotropic metric tensor constructed in each point.
Minimal separating geodesic is found.

(a) (b) (c) (d)

Figure: (a) Image data and foreground seed. (b) Continuous maximum flow.
(c) Combinatorial graph cuts, BK method, N16. (d) Combinatorial graph cuts,
proposed method, N16.
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Image Segmentation - Synthetic Data

Image derived anisotropic metric tensor constructed in each point.
Minimal separating geodesic is found.

(a) (b) (c) (d)

Figure: (a) Image data and foreground seed. (b) Continuous maximum flow.
(c) Combinatorial graph cuts, BK method, N16. (d) Combinatorial graph cuts,
proposed method, N16.
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Conclusions

Alternative method for Riemannian metric approximation via graph
cuts presented

Advantages:
Smaller error than existing approaches
Explicit formula for both 2D and 3D
Straightforward integration into existing algorithms for improved
precision

Disadvantages:
Computation of spherical Voronoi diagram in 3D is slow

Can be computed only once for scalar (isotropic) or constant metrics

Still less precise than continuous methods

Future work:
Better/faster approximation for discrete graph cuts?
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End of the Talk

Thank you for your attention!

xdanek2@fi.muni.cz

http://cbia.fi.muni.cz
http://cbia.fi.muni.cz/projects/graph-cut-library.html
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