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Graph Cut Based Image Segmentation

Reference

Y. Boykov and G. Funka-Lea. Graph cuts and effcient n-d image
segmentation. International Journal of Compututer Vision,
70(2):109-131, 2006.

@ Image segmentation
formulated as an discrete
energy optimization problem

@ Energy function is embedded 4 1t
in a specially designed graph

@ Optimal solution obtained by
finding a minimum cut
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Properties and Challenges

Advantages:
@ Global optima
@ Polynomial time algorithms
@ Straightforward integration of hard constraints
@ Applicable in N-D space

Challenges:

@ Optimization of “length” dependent energy terms
@ Popular segmentation models:
e Chan-Vese model - minimizes the intra-region intensity variance
and the Euclidean length of the segmentation boundary
o Geodesic active contours - segmentation boundary defined as a
eodesic in an image-based N-D Riemannian space
9 g BT 1Y
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Cut Metrics

Reference

Y. Boykov and V. Kolmogorov. Computing geodesics and minimal
surfaces via graph cuts. Proceedings of the Ninth IEEE International
Conference on Computer Vision, pp. 26-33, vol. 1, 2003.

@ Correspondence of cuts and
contours in grid graphs

@ Cut cost approximates
Euclidean/Riemannian length of a
corresponding contour

@ Find geodesics and minimal

surfaces (satisfying constraints) by
finding minimum cuts
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Edge Weights and the Cauchy-Crofton Formula (2D)
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Riemannian Metrics and Method Issues

Riemannian metrics:
@ A smoothly varying metric tensor M defined at each node
@ Approximating edge weights (2D):
R < det M

W = wj -
k K (u] - M- ug)372

Issues:
@ Computation of Agy
o Not invariant to horizontal and vertical mirroring
e Extension to 3D unclear, no explicit method
@ Large error in case of Riemannian metrics for common
neighbourhoods
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Voronoi Based A¢y Partitioning

Reference

O. Danék and P. Matula. Graph cuts and approximation of the
euclidean metric on anisotropic grids. VISAPP *10: International
Conference on Computer Vision Theory and Applications. vol. 2, pp.
68-73 (2010)

@ Agy - Measure of lines closest to e
in terms of their angular orientation

@ Computed via Voronoi diagram on a
unit hypersphere

@ Invariant to mirroring, generalizes to
3D
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Decomposition of Constant Metrics

Constant Riemannian metric:
@ Non-zero positive definite symmetric matrix M
o ||ulr =VuT-M-u
@ Two real-valued eigenvalues A\ and Ao, corresponding to
eigenvectors uy and u»

@ Represents a space dilation by /Ay and /) in the direction of u4
and u», respectively

Transformation matrix T

@ Same eigenvectors as M, but eigenvalues /A1 and /Ao
oM=TT.T
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Space Projection Trick

TN

de(T-u,T-v) = [IT-(u=V)e
= T w=-T (T w-v)
- \/(U_V)TATTATA(U_.,)

Ww=vT -M-(u=v)

[lu=vllr

dr(u, v) ‘c.a.iA
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Key Observation

@ Projected space is Euclidean

@ Transformation is linear = number of intersections with each
family of lines is preserved
@ Corollary:

e Cauchy-Crofton formula for Euclidean spaces applies

e Edge weight formula for Euclidean spaces can be used considering
the transformed set of lines

e Imprecise Riemannian edge weight formula is bypassed
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Edge Weights Computation

SR _ Dokl A, _ OetT _ detM
k 2 PE=T edlle  llekllr
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Non-constant Metrics and Extension to 3D

Non-constant metrics:

@ Different matrix M is considered in each node to compute the
edge weights

Extension to 3D:

@ Derived the same way from Cauchy-Crofton formula for surface

area
N

s

o Wi =
k
@ ¢} is the Voronoi partitioning of a unit sphere surface among the
points -2

@ Apy is the line density, the same formula as in 2D applies
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Metrication Error for Straight Lines in 2D
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Distance Maps
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Catenoid Reconstruction

(@) Nas (b) Nag (c) Continuous




Image Segmentation - Cell Nuclei

@ Image derived anisotropic metric tensor constructed in each point.
Minimal separating geodesic is found.

()

Figure: (a) Image data and foreground seeds. (b) Continuous maximum flow.
(c) Combinatorial graph cuts, BK method, Ni6. (d) Combinatorial graph cuts,

proposed method, Ne. B}
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Image Segmentation - Knee MRI

@ Image derived anisotropic metric tensor constructed in each point.
Minimal separating geodesic is found.

Continuous maximum flow.
d) Combinatorial graph cuts,

Figure: (a) Image data and foreground seed. (b
(c) Combinatorial graph cuts, BK method, Nie.
proposed method, Ne.
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Image Segmentation - Synthetic Data

@ Image derived anisotropic metric tensor constructed in each point.
Minimal separating geodesic is found.

@ ®  ©

Figure: (a) Image data and foreground seed. (b)
(c) Combinatorial graph cuts, BK method, Nie. (
proposed method, Nie.

Continuous maximum flow.
d) Combinatorial graph cuts,
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Conclusions

Alternative method for Riemannian metric approximation via graph
cuts presented
@ Advantages:
e Smaller error than existing approaches
e Explicit formula for both 2D and 3D
e Straightforward integration into existing algorithms for improved
precision
@ Disadvantages:
e Computation of spherical Voronoi diagram in 3D is slow
@ Can be computed only once for scalar (isotropic) or constant metrics
o Still less precise than continuous methods

Future work:
@ Better/faster approximation for discrete graph cuts?
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End of the Talk

Thank you for your attention!
xdanek2@fi.muni.cz

http://cbia.fi.muni.cz
http://cbia.fi.muni.cz/projects/graph-cut-library.htmi
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