Smooth 2D Coordinates on Discrete Surfaces

COLIN CARTADE

LIMOS, Université d'Auvergne

with R. Malgouyres, C. Mercat, C. Samir

DGCI 2011, April 8th

Main problem

- ▶ Parameterized surface : $(s, t) \in \mathbb{R}^2 \mapsto (x(s, t), y(s, t), z(s, t)) \in S$
- ▶ Parameterization : $(x, y, z) \in S \mapsto (s(x, y, z), t(x, y, z)) \in \mathbb{R}^2$
- ► Conformal ↔ preserving angles

2D parameterization

4

- 1 Discrete conformal parameterizations
 - \rightarrow Quadrangular meshes
 - → Triangular meshes
 - → Digital surfaces

2 –	Boundary conditions	7
	\rightarrow Link with the Riemann mapping theorem	
	→ Link with the cotan conformal coordinates method	
3 –	Practical computation	11
4 —	Numerical results	14

1 – Discrete conformal parameterizations

1.1 – Quadrangular meshes

Conformal structure

$$\rightarrow \rho = \frac{v_i - v_j}{i \times (v_k - v_i)} \in \mathbf{C}$$

- Parameterization : $v_i \in S \mapsto v'_i \in \mathbf{C}$
- Linear system

$$v_i' - v_j' = i\rho(v_k' - v_i')$$

Mercat, C.: Discrete Riemann surfaces and the Ising model. Communications in Mathematical Physics 218(1), 177-216 (2001)

1.2 – Triangular meshes

Construction of a quadrangular mesh

Parameterization of the quadrangular mesh.

1.3 – Digital surfaces

- Face = Surfel = Square $\rightarrow \rho = 1$
- Estimation of (continuous) normales
- Projection of the surfel on the tangent plane
 parallelogram
- Definition :

 ρ of a surfel = ρ of the parallelogram.

Fourey, S., Malgouyres, R.: Normals estimation for digital surfaces based on convolutions. Computers & Graphics 33(1), 210 (2009). Mercat, C.: Discrete complex structure on surfel surfaces. In: Discrete Geometry

for Computer Imagery. pp. 153164. Springer (2008)

2 – Boundary conditions

2.1 – Riemann mapping theorem

Riemann mapping theorem

surface homeomorphic to a disk \Rightarrow has a conformal parametrisation

- Uniqueness if:
 - \rightarrow the boundary is mapped on the unit circle
 - \rightarrow the images of 3 boundary points are fixed

2.2 – Discrete version

- Notations : n_v vertices n_e edges n_f faces n_b boundary points
- ► $n_b + 2$ degrees of freedom → Hint: $\begin{cases}
 4n_f = 2n_e - n_b \\
 1 = \text{Euler characteristic of the disk} \\
 = n_f - n_e + n_v
 \end{cases}$

- Discrete version of the Riemann mapping theorem
 - \rightarrow we send the boundary onto the disk
 - \rightarrow we fix two (almost three) boundary points

2.3 – Generalization of the cotan method for triangular meshes

Method

 \rightarrow they fix the images of the boundary points

 \rightarrow for each interior vertex v_i ,

$$\sum_{i,j,j} \left(\cot \alpha_{ij} + \cot \alpha_{ji}\right) \left(v'_j - v'_i\right) = 0$$

j : v_j neighbour of v_i

 \rightarrow linear system

• *Remark:* similar to the relaxation of a network of springs.

Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates. Experimental mathematics 2(1), 1536 (1993).

Dual points

- $\rightarrow\,$ circumcenters of the triangles
- \rightarrow middle of the boundary edges
- Boundary constraints
 - → fix initial boundary points as with the *cotan* method
 - \rightarrow fix one the dual boundary points
- Same parameterization as with the *cotan* method.
 - \rightarrow Hint:

 $\rho(v_0, v_5, v_1, v_4) = \cot \alpha_1 + \cot \alpha_2$

3 – Practical computation

3.1 – Minimizing energies

Conformal energy

$$H = \sum |(v'_{l} - v'_{j}) - \rho_{f} (v'_{k} - v'_{i})|^{2},$$

sum over all the faces $f = (v_i, v_j, v_k, v_l)$.

Boundary energy

$$C = \sum \left(|v_i'|^2 - 1 \right)^2$$

sum over the boundary vertices except the fixed ones.

• We look for the v'_i coordinates that minimize

$$E = \alpha H + \beta C$$

using a Newton Method (BFGS).

3.2 – Initialization

- Boundary points on the unit circle.
- Interior points in 0.
- Fixed points as far as possible from each other.

3.3 – Preserving lengths and areas

Preserving lengths

$$L = \sum \left(|v'_i - v'_j|^2 - ||v_i - v_j||^2 \right)^2,$$

sum over all the edges $[v_i, v_j]$ (or only boundary ones).

Preserving areas

$$A = \sum \left(\operatorname{Im}(v'_{k} - v'_{i}) \overline{(v'_{l} - v'_{j})} - \|(v_{l} - v_{i}) \wedge (v_{k} - v_{i})\| - \|(v_{k} - v_{i}) \wedge (v_{j} - v_{i})\| \right)^{2}$$

sum over all the faces (v_i, v_j, v_k, v_l) .

- 2 steps algorithm
 - \rightarrow minimization of *H* with fixed boundary
 - → use this minimum as initial condition to minimize $E = \alpha H + \beta L + \gamma A + \cdots$

4 – Numerical results

4.1 – Comparison of energies

• Energy : E = H + C

Boundary :

- Distortions :
 - \rightarrow angles: 0.01 (radian)
 - \rightarrow areas: 0.37 (ratio, should be 1)
 - \rightarrow lengths: 0.58 (ratio)
 - \rightarrow conformal

very unnatural boundary

- Energy : E = H + L (boundary only)
- Boundary :
- Distortions :
 - \rightarrow angles: 0.01 (radian)
 - \rightarrow areas: 0.88 (ratio, should be 1)
 - → lengths: 0.93 (ratio)
 - → conformal,
 natural boundary,
 area distortion

• Energy : E = H + A

- Distortions :
 - \rightarrow angles: 0.08
 - \rightarrow areas: 0.98 (ratio, should be 1)
 - \rightarrow lengths: 0.96 (ratio)
 - → natural boundary,
 good texture mapping,
 quasi-conformal

4.2 – Comparison with classical methods for digital surfaces

Voxel method, E = H + 0.01A

Conclusion

- A method that can be applied to
 - → quadrangular meshes
 - \rightarrow triangular meshes
 - \rightarrow digital surfaces
- A discrete version of the Riemann mapping theorem
- A flexible method: can preserve more or less
 - \rightarrow shapes
 - → metric
 - → boundaries

 \rightarrow . . .