An Error Bounded Tangent Estimator for Digitized Elliptic Curves

- P_{0} is the point at which we want to compute the tangent
- Make a circle of radius R (R is much smaller than the dimensions of elliptic curve)
- Get points P_{1} and P_{2}
- Get the slope ' m ' of line $P_{1} P_{2}$
- The estimated tangent is the line with slope ' m ' but passing

There is a definite upper bound of the error through P_{0}

DGCI 2011 Dilip Kumar Prasad, Raj Kumar Gupta, Maylor K. H.

The upper bound

$$
\partial \tilde{\phi}_{\max }=\max \left(\frac{1}{s^{3}}(\sin \tilde{\phi} \pm \cos \tilde{\phi})\left(s^{2}-s(\pm \cos \tilde{\phi} \pm \sin \tilde{\phi})+(\pm \cos \tilde{\phi} \pm \sin \tilde{\phi})^{2}\right)\right)
$$

$\tilde{\phi}=$ angle subtended by the actual tangent on the x -axis

$$
s=\left|P_{1} P_{2}\right|
$$

Choice of R:

- angle subtended by the points P_{1} and P_{2} should be small

Total angle subtended: $2 \Delta \theta$

$$
R \leq 2 b \sin \left(\Delta \theta_{\max } / 2\right)
$$

$\Delta \theta= \pm 2 \sin ^{-1}\left(\sqrt{\frac{R^{2}}{4\left(a^{2} \sin ^{2} \theta_{0}+b^{2} \cos ^{2} \theta_{0}\right)}}\right)$
Example: $\Delta \theta_{\max }=(\pi / 18)$ or 10°
Then $R \leq 0.1743 b$

DGCI 2011 Dilip Kumar Prasad, Raj Kumar Gupta, Maylor K. H. Leung, Nanyang Technological University, Singapore

Examples

Average absolute error in the computation of tangents for 100 experiments with digitized circles of radius 100 and centers within 1

The digitized flower shape pixel region chosen randomly.
 The angle of the "tangents on the actual curve and the digital curve (using $R=20$)

The error in the computation of the tangent due to digitization for various values of R

