Completions and simplicial complexes

Gilles Bertrand

LIGM - Equipe A3SI - ESIEE - Université Paris-Est, France

DGCI 2011 - Nancy - 06/04/2011

Completions

- Completions are inductive properties which may be expressed in a declarative way and which may be combined.
- We show that completions may be used for describing structures or transformations which appear in combinatorial topology.

All completions $\langle \kappa \rangle$ have the following form: \rightarrow If $\mathbf{F} \subseteq \mathcal{K}$, then $\mathbf{G} \subseteq \mathcal{K}$ whenever $(\mathbf{F}, \mathbf{G}) \in \kappa$.

 $\langle \mathbf{K} \rangle$

• F must be finite.

Theorem Let $X \subseteq S$. There exists a unique minimal collection which contains X and which satisfies $\langle \kappa \rangle$. We write $\langle X, \kappa \rangle$ for this collection. We introduce the notion of a dendrite for defining a remarkable collection made of acyclic complexes.

We define the two completions $\langle C_{UP} \rangle$ and $\langle C_{AP} \rangle$: \rightarrow If $S, T \in \mathcal{K}$, then $S \cup T \in \mathcal{K}$ whenever $S \cap T \in \mathcal{K}$. $\langle C_{UP} \rangle$ \rightarrow If $S, T \in \mathcal{K}$, then $S \cap T \in \mathcal{K}$ whenever $S \cup T \in \mathcal{K}$. $\langle C_{AP} \rangle$ We set $\mathbb{D} = \langle \mathbb{C}, C_{UP}, C_{AP} \rangle$. Each element of \mathbb{D} is a *dendrite*. The symbol \mathbb{C} stands for the collection of all cells (points, segments, triangles, tetrahedra...).

Theorem.

A simplicial complex is a dendrite if and only if it is contractible.

Thank you for your attention.

Completions and simplicial complexes DGCI 2011 - Nancy - 06/04/2011