Efficient robust digital hyperplane fitting with bounded error

Dror Aiger, Yukiko Kenmochi, Lilian Buzer, Hugues Talbot Université Paris-Est, Laboratoire d'Informatique Gaspard-Monge, France

April 6th, 2011

Our aim: hyperplane fitting

Example: 205001 discrete points in a 3D image generated from an electron nano-tomography image containing a cubical crystal.

2/7

Our aim: hyperplane fitting

Example: 205001 discrete points in a 3D image generated from an electron nano-tomography image containing a cubical crystal.

Remark

As input contains a large number of points with many outliers, we need an **efficient** and **robust** fitting method.

Problem

Given a finite set of N discrete points, seek the **maximum subset** whose elements are contained in a **digital hyperplane** defined by

$$\mathbf{D}(\mathbf{H}) = \{ (x_1, x_2, \dots, x_d) \in \mathbb{Z}^d : 0 \le a_1 x_1 + a_2 x_2 + \dots + a_d x_d + a_{d+1} < w \},\$$

with the normalization $-1 \le a_i \le 1$ for i = 1, 2..., d such that there exists at least one coefficient $a_i = 1$, where w is a constant width.

Problem

Given a finite set of N discrete points, seek the **maximum subset** whose elements are contained in a **digital hyperplane** defined by

$$\mathbf{D}(\mathbf{H}) = \{ (x_1, x_2, \dots, x_d) \in \mathbb{Z}^d : 0 \le a_1 x_1 + a_2 x_2 + \dots + a_d x_d + a_{d+1} < w \},\$$

with the normalization $-1 \le a_i \le 1$ for i = 1, 2..., d such that there exists at least one coefficient $a_i = 1$, where w is a constant width.

Exact fitting and approximations

Contribution 1

The **optimal complexity** for finding an exact solution is $O(N^d)$ where d is the space dimension.

DGCI2011

Exact fitting and approximations

Contribution 1

The **optimal complexity** for finding an exact solution is $O(N^d)$ where d is the space dimension.

Number of operation $\approx 10^{16}$ Impossible! (10⁷ seconds ≈ 100 days)

Exact fitting and approximations

Contribution 1

The **optimal complexity** for finding an exact solution is $O(N^d)$ where d is the space dimension.

Number of operation $\approx 10^{16}$ Impossible! (10⁷ seconds ≈ 100 days)

Contribution 2

Two **linear approximation methods** with different bounded errors are proposed.

Bounded error in number of inliers

Given some $\varepsilon > 0$, we find a digital hyperplane that contains at least $(1 - \varepsilon)n_{opt}$ points, where n_{opt} is the maximum possible number of points that belong to any digital hyperplane, assuming $n_{opt} = \Omega(N)$.

Bounded error in number of inliers

Given some $\varepsilon > 0$, we find a digital hyperplane that contains at least $(1 - \varepsilon)n_{opt}$ points, where n_{opt} is the maximum possible number of points that belong to any digital hyperplane, assuming $n_{opt} = \Omega(N)$.

Runtime

•
$$O(N + \varepsilon^{-4} \log N)$$
 for $d = 2$,

•
$$O(N(\varepsilon^{-2} \log N)^{d+1})$$
 for larger d .

Bounded error in digital hyperplane width w

Given some $\varepsilon > 0$, we find a **digital hyperplane of width** $w + 5\varepsilon$ that contains $n > n_{opt}$ points, where n_{opt} is the maximum number of points that belong to any digital hyperplane of width w in a grid $[0, \delta]^d$.

Bounded error in digital hyperplane width w

Given some $\varepsilon > 0$, we find a **digital hyperplane of width** $w + 5\varepsilon$ that contains $n > n_{opt}$ points, where n_{opt} is the maximum number of points that belong to any digital hyperplane of width w in a grid $[0, \delta]^d$.

Results with Approximation 2

Digital plane fitting for a pre-processed 3D binary nano-tomography image containing 205001 discrete points is achieved in 12 seconds (w = 1, $\varepsilon = 4$).

 $\varepsilon = 4$ for w = 1 (left) and w = 25 (right).