Efficient robust digital hyperplane fitting with bounded error

Dror Aiger, Yukiko Kenmochi, Lilian Buzer, Hugues Talbot Université Paris-Est, Laboratoire d'Informatique Gaspard-Monge, France

April 6th, 2011

Our aim: hyperplane fitting

Example: 205001 discrete points in a 3D image generated from an electron nano-tomography image containing a cubical crystal.

Our aim: hyperplane fitting

Example: 205001 discrete points in a 3D image generated from an electron nano-tomography image containing a cubical crystal.

Remark

As input contains a large number of points with many outliers, we need an efficient and robust fitting method.

Digital hyperplane fitting

Problem

Given a finite set of N discrete points, seek the maximum subset whose elements are contained in a digital hyperplane defined by
$\mathbf{D}(\mathbf{H})=\left\{\left(x_{1}, x_{2}, \ldots, x_{d}\right) \in \mathbb{Z}^{d}: 0 \leq a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{d} x_{d}+a_{d+1}<w\right\}$,
with the normalization $-1 \leq a_{i} \leq 1$ for $i=1,2 \ldots, d$ such that there exists at least one coefficient $a_{i}=1$, where w is a constant width.
a digital line

Digital hyperplane fitting

Problem

Given a finite set of N discrete points, seek the maximum subset whose elements are contained in a digital hyperplane defined by
$\mathbf{D}(\mathbf{H})=\left\{\left(x_{1}, x_{2}, \ldots, x_{d}\right) \in \mathbb{Z}^{d}: 0 \leq a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{d} x_{d}+a_{d+1}<w\right\}$,
with the normalization $-1 \leq a_{i} \leq 1$ for $i=1,2 \ldots, d$ such that there exists at least one coefficient $a_{i}=1$, where w is a constant width.

Exact fitting and approximations

Contribution 1
The optimal complexity for finding an exact solution is $O\left(N^{d}\right)$ where d is the space dimension.

Exact fitting and approximations

Contribution 1

The optimal complexity for finding an exact solution is $O\left(N^{d}\right)$ where d is the space dimension.

Number of operation $\approx 10^{16}$
Impossible! (10^{7} seconds ≈ 100 days)

Exact fitting and approximations

Contribution 1

The optimal complexity for finding an exact solution is $O\left(N^{d}\right)$ where d is the space dimension.

Number of operation $\approx 10^{16}$
Impossible! (10^{7} seconds ≈ 100 days)

Contribution 2

Two linear approximation methods with different bounded errors are proposed.

Approximation 1

Bounded error in number of inliers

Given some $\varepsilon>0$, we find a digital hyperplane that contains at least $(1-\varepsilon) n_{\text {opt }}$ points, where $n_{\text {opt }}$ is the maximum possible number of points that belong to any digital hyperplane, assuming $n_{o p t}=\Omega(N)$.

Approximation 1

Bounded error in number of inliers

Given some $\varepsilon>0$, we find a digital hyperplane that contains at least $(1-\varepsilon) n_{\text {opt }}$ points, where $n_{\text {opt }}$ is the maximum possible number of points that belong to any digital hyperplane, assuming $n_{\text {opt }}=\Omega(N)$.

Runtime

- $O\left(N+\varepsilon^{-4} \log N\right)$ for $d=2$,
- $O\left(N\left(\varepsilon^{-2} \log N\right)^{d+1}\right)$ for larger d.

Approximation 2

Bounded error in digital hyperplane width w

Given some $\varepsilon>0$, we find a digital hyperplane of width $w+5 \varepsilon$ that contains $n>n_{\text {opt }}$ points, where $n_{\text {opt }}$ is the maximum number of points that belong to any digital hyperplane of width w in a grid $[0, \delta]^{d}$.

Approximation 2

Bounded error in digital hyperplane width w

Given some $\varepsilon>0$, we find a digital hyperplane of width $w+5 \varepsilon$ that contains $n>n_{\text {opt }}$ points, where $n_{\text {opt }}$ is the maximum number of points that belong to any digital hyperplane of width w in a grid $[0, \delta]^{d}$.

Runtime

$$
O\left(N+\left(\frac{\delta}{\varepsilon}\right)^{d} \log ^{O(1)}\left(\frac{\delta}{\varepsilon}\right)\right)
$$

Results with Approximation 2

Digital plane fitting for a pre-processed 3D binary nano-tomography image containing 205001 discrete points is achieved in 12 seconds ($w=1, \varepsilon=4$).

$$
\varepsilon=4 \text { for } w=1 \text { (left) and } w=25 \text { (right). }
$$

