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Our aim: hyperplane fitting

Example: 205001 discrete points
in a 3D image generated from an
electron nano-tomography image
containing a cubical crystal.
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Our aim: hyperplane fitting

Example: 205001 discrete points
in a 3D image generated from an
electron nano-tomography image
containing a cubical crystal.

As input contains a large number of points with many outliers, we need an
efficient and robust fitting method.
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Digital hyperplane fitting

Problem
Given a finite set of N discrete points, seek the maximum subset
whose elements are contained in a digital hyperplane defined by

D(H) = {(Xl,Xz, e ,Xd) € 79 0 < aixy+asxo+. .. +agxg+ag+1 < W},

with the normalization —1 < a; <1 for i = 1,2...,d such that there
exists at least one coefficient a; = 1, where w is a constant width.
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Exact fitting and approximations

The optimal complexity for finding an exact solution is O(N9) where
d is the space dimension.
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Exact fitting and approximations

The optimal complexity for finding an exact solution is O(N9) where

d is the space dimension.
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Number of operation ~ 1
~ 100 days)

Impossible! (107 seconds
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Exact fitting and approximations

The optimal complexity for finding an exact solution is O(N9) where

d is the space dimension.
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Number of operation ~ 1
~ 100 days)

Impossible! (107 seconds

Two linear approximation methods with different bounded errors are

proposed.
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Approximation 1

Bounded error in number of inliers

Given some € > 0, we find a digital hyperplane that contains at least
(1 —€)ngpr points, where ngpy is the maximum possible number of
points that belong to any digital hyperplane, assuming ngpr = Q(N).
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Approximation 1

Bounded error in number of inliers

Given some € > 0, we find a digital hyperplane that contains at least
(1 —€)ngpr points, where ngpy is the maximum possible number of
points that belong to any digital hyperplane, assuming ngpr = Q(N).
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m O(N +c*logN) for d = 2, @ S
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Approximation 2

Bounded error in digital hyperplane width w

Given some € > 0, we find a digital hyperplane of width w + 5¢ that
contains n > nep: points, where ngp: is the maximum number of points
that belong to any digital hyperplane of width w in a grid [0, §]9.

w+5e
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Approximation 2

Bounded error in digital hyperplane width w

Given some ¢ > 0, we find a digital hyperplane of width w + 5¢ that
contains n > nep: points, where ngp: is the maximum number of points
that belong to any digital hyperplane of width w in a grid [0, §]9.

Runtime
O(N + (£)? 10g°1)(?))
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Results with Approximation 2

Digital plane fitting for a pre-processed 3D binary nano-tomography image
containing 205001 discrete points is achieved in 12 seconds (w =1, € = 4).

e =4 for w=1 (left) and w = 25 (right).




